Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
EMBO J ; 38(23): e102345, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701556

RESUMO

In Alzheimer's disease, BACE1 protease initiates the amyloidogenic processing of amyloid precursor protein (APP) that eventually results in synthesis of ß-amyloid (Aß) peptide. Aß deposition in turn causes accumulation of BACE1 in plaque-associated dystrophic neurites, thereby potentiating progressive Aß deposition once initiated. Since systemic pharmacological BACE inhibition causes adverse effects in humans, it is important to identify strategies that specifically normalize overt BACE1 activity around plaques. The microtubule-associated protein tau regulates axonal transport of proteins, and tau deletion rescues Aß-induced transport deficits in vitro. In the current study, long-term in vivo two-photon microscopy and immunohistochemistry were performed in tau-deficient APPPS1 mice. Tau deletion reduced plaque-associated axonal pathology and BACE1 accumulation without affecting physiological BACE1 expression distant from plaques. Thereby, tau deletion effectively decelerated formation of new plaques and reduced plaque compactness. The data revealed that tau reinforces Aß deposition, presumably by contributing to accumulation of BACE1 in plaque-associated dystrophies. Targeting tau-dependent mechanisms could become a suitable strategy to specifically reduce overt BACE1 activity around plaques, thereby avoiding adverse effects of systemic BACE inhibition.


Assuntos
Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Regulação da Expressão Gênica , Placa Amiloide/prevenção & controle , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Placa Amiloide/etiologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia
2.
EMBO J ; 35(20): 2213-2222, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27572463

RESUMO

Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP-KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP-KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP The underlying mechanism of these spine abnormalities in APP-KO mice was ascribed to an impairment in D-serine homeostasis. Extracellular D-serine concentration was significantly reduced in APP-KO mice, coupled with an increase of total D-serine. Strikingly, chronic treatment with exogenous D-serine normalized D-serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP-KO mice. The cognitive deficit observed in APP-KO mice was also rescued by D-serine treatment. These data suggest that APP regulates homeostasis of D-serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Plasticidade Neuronal , Serina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Transtornos Cognitivos/metabolismo , Feminino , Homeostase , Camundongos Knockout
3.
Acta Neuropathol ; 139(2): 319-345, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768670

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Fenótipo
4.
Proc Natl Acad Sci U S A ; 114(11): E2253-E2262, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28246328

RESUMO

Members of the synaptic vesicle glycoprotein 2 (SV2) family of proteins are involved in synaptic function throughout the brain. The ubiquitously expressed SV2A has been widely implicated in epilepsy, although SV2C with its restricted basal ganglia distribution is poorly characterized. SV2C is emerging as a potentially relevant protein in Parkinson disease (PD), because it is a genetic modifier of sensitivity to l-DOPA and of nicotine neuroprotection in PD. Here we identify SV2C as a mediator of dopamine homeostasis and report that disrupted expression of SV2C within the basal ganglia is a pathological feature of PD. Genetic deletion of SV2C leads to reduced dopamine release in the dorsal striatum as measured by fast-scan cyclic voltammetry, reduced striatal dopamine content, disrupted α-synuclein expression, deficits in motor function, and alterations in neurochemical effects of nicotine. Furthermore, SV2C expression is dramatically altered in postmortem brain tissue from PD cases but not in Alzheimer disease, progressive supranuclear palsy, or multiple system atrophy. This disruption was paralleled in mice overexpressing mutated α-synuclein. These data establish SV2C as a mediator of dopamine neuron function and suggest that SV2C disruption is a unique feature of PD that likely contributes to dopaminergic dysfunction.


Assuntos
Dopamina/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/metabolismo , Vesículas Sinápticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Gânglios da Base/metabolismo , Biomarcadores , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Deleção de Genes , Expressão Gênica , Humanos , Locomoção , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Nicotina/metabolismo , Nicotina/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Ligação Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Glia ; 67(5): 985-998, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667091

RESUMO

The investigation of amyloid precursor protein (APP) has been mainly confined to its neuronal functions, whereas very little is known about its physiological role in astrocytes. Astrocytes exhibit a particular morphology with slender extensions protruding from somata and primary branches. Along these fine extensions, spontaneous calcium transients occur in spatially restricted microdomains. Within these microdomains mitochondria are responsible for local energy supply and Ca2+ buffering. Using two-photon in vivo Ca2+ imaging, we report a significant decrease in the density of active microdomains, frequency of spontaneous Ca2+ transients and slower Ca2+ kinetics in mice lacking APP. Mechanistically, these changes could be potentially linked to mitochondrial malfunction as our in vivo and in vitro data revealed severe, APP-dependent structural mitochondrial fragmentation in astrocytes. Functionally, such mitochondria exhibited prolonged kinetics and morphology dependent signal size of ATP-induced Ca2+ transients. Our results highlight a prominent role of APP in the modulation of Ca2+ activity in astrocytic microdomains whose precise functioning is crucial for the reinforcement and modulation of synaptic function. This study provides novel insights in APP physiological functions which are important for the understanding of the effects of drugs validated in Alzheimer's disease treatment that affect the function of APP.


Assuntos
Precursor de Proteína beta-Amiloide/deficiência , Astrócitos/ultraestrutura , Encéfalo/citologia , Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Mitocôndrias/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/ultraestrutura , Transdução Genética , Transfecção
6.
J Neurosci ; 36(16): 4408-14, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098685

RESUMO

α-Synuclein (α-syn) missense and multiplication mutations have been suggested to cause neurodegenerative diseases, including Parkinson's disease (PD) and dementia with Lewy bodies. Before causing the progressive neuronal loss, α-syn mutations impair exocytosis, which may contribute to eventual neurodegeneration. To understand how α-syn mutations impair exocytosis, we developed a mouse model that selectively expressed PD-related human α-syn A53T (h-α-synA53T) mutation at the calyx of Held terminals, where release mechanisms can be dissected with a patch-clamping technique. With capacitance measurement of endocytosis, we reported that h-α-synA53T, either expressed transgenically or dialyzed in the short term in calyces, inhibited two of the most common forms of endocytosis, the slow and rapid vesicle endocytosis at mammalian central synapses. The expression of h-α-synA53Tin calyces also inhibited vesicle replenishment to the readily releasable pool. These findings may help to understand how α-syn mutations impair neurotransmission before neurodegeneration. SIGNIFICANCE STATEMENT: α-Synuclein (α-syn) missense or multiplication mutations may cause neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. The initial impact of α-syn mutations before neuronal loss is impairment of exocytosis, which may contribute to eventual neurodegeneration. The mechanism underlying impairment of exocytosis is poorly understood. Here we report that an α-syn mutant, the human α-syn A53T, inhibited two of the most commonly observed forms of endocytosis, slow and rapid endocytosis, at a mammalian central synapse. We also found that α-syn A53T inhibited vesicle replenishment to the readily releasable pool. These results may contribute to accounting for the widely observed early synaptic impairment caused by α-syn mutations in the progression toward neurodegeneration.


Assuntos
Endocitose/genética , Mutação/genética , Terminações Nervosas/fisiologia , Terminações Pré-Sinápticas/fisiologia , alfa-Sinucleína/genética , Animais , Tronco Encefálico/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , alfa-Sinucleína/metabolismo
7.
Hum Mol Genet ; 24(18): 5299-312, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123485

RESUMO

Preferential dysfunction/degeneration of midbrain substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons contributes to the main movement symptoms manifested in Parkinson's disease (PD). Although the Leucine-rich repeat kinase 2 (LRRK2) G2019S missense mutation (LRRK2 G2019S) is the most common causative genetic factor linked to PD, the effects of LRRK2 G2019S on the function and survival of SNpc DA neurons are poorly understood. Using a binary gene expression system, we generated transgenic mice expressing either wild-type human LRRK2 (WT mice) or the LRRK2 G2019S mutation (G2019S mice) selectively in the midbrain DA neurons. Here we show that overexpression of LRRK2 G2019S did not induce overt motor abnormalities or substantial SNpc DA neuron loss. However, the LRRK2 G2019S mutation impaired dopamine homeostasis and release in aged mice. This reduction in dopamine content/release coincided with the degeneration of DA axon terminals and decreased expression of DA neuron-enriched genes tyrosine hydroxylase (TH), vesicular monoamine transporter 2, dopamine transporter and aldehyde dehydrogenase 1. These factors are responsible for dopamine synthesis, transport and degradation, and their expression is regulated by transcription factor paired-like homeodomain 3 (PITX3). Levels of Pitx3 mRNA and protein were similarly decreased in the SNpc DA neurons of aged G2019S mice. Together, these findings suggest that PITX3-dependent transcription regulation could be one of the many potential mechanisms by which LRRK2 G2019S acts in SNpc DA neurons, resulting in downregulation of its downstream target genes critical for dopamine homeostasis and release.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores Etários , Animais , Comportamento Animal , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora , Degeneração Neural/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Sci Rep ; 14(1): 164, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167878

RESUMO

Dopamine (DA) plays a critical role in striatal motor control. The drop in DA level within the dorsal striatum is directly associated with the appearance of motor symptoms in Parkinson's disease (PD). The progression of the disease and inherent disruption of the DA neurotransmission has been closely related to accumulation of the synaptic protein α-synuclein. However, it is still unclear how α-synuclein affects dopaminergic terminals in different areas of dorsal striatum. Here we demonstrate that the overexpression of human α-synuclein (h-α-syn) interferes with the striatal DA neurotransmission in an age-dependent manner, preferentially in the dorsolateral striatum (DLS) of PDGF-h-α-syn mice. While 3-month-old mice showed an increase at the onset of h-α-syn accumulation in the DLS, 12-month-old mice revealed a decrease in electrically-evoked DA release. The enhanced DA release in 3-month-old mice coincided with better performance in a behavioural task. Notably, DA amplitude alterations were also accompanied by a delay in the DA clearance independently from the animal age. Structurally, dopamine transporter (DAT) was found to be redistributed in larger DAT-positive clumps only in the DLS of 3- and 12-month-old mice. Together, our data provide new insight into the vulnerability of DLS and suggest DAT-related dysfunctionalities from the very early stages of h-α-syn accumulation.


Assuntos
Doença de Parkinson , Camundongos , Humanos , Animais , Lactente , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Camundongos Transgênicos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Corpo Estriado/metabolismo , Transmissão Sináptica
9.
J Neurosci ; 32(49): 17921-31, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223310

RESUMO

Dopamine replacement with levodopa (L-DOPA) represents the mainstay of Parkinson's disease (PD) therapy. Nevertheless, this well established therapeutic intervention loses efficacy with the progression of the disease and patients develop invalidating side effects, known in their complex as L-DOPA-induced dyskinesia (LID). Unfortunately, existing therapies fail to prevent LID and very few drugs are available to lessen its severity, thus representing a major clinical problem inPDtreatment. D2-like receptor (D2R) agonists are a powerful clinical option as an alternative to L-DOPA, especially in the early stages of the disease, being associated to a reduced risk of dyskinesia development. D2R agonists also find considerable application in the advanced stages of PD, in conjunction with L-DOPA, which is used in this context at lower dosages, to delay the appearance and the extent of the motor complications. In advanced stages of PD, D2R agonists are often effective in delaying the appearance and the extent of motor complications. Despite the great attention paid to the family of D2R agonists, the main reasons underlying the reduced risk of dyskinesia have not yet been fully characterized. Here we show that the striatal NMDA/AMPAreceptor ratio and theAMPAreceptor subunit composition are altered in experimental parkinsonism in rats. Surprisingly, while L-DOPA fails to restore these critical synaptic alterations, chronic treatment with pramipexole is associated not only with a reduced risk of dyskinesia development but is also able to rebalance, in a dose-dependent fashion, the physiological synaptic parameters, thus providing new insights into the mechanisms of dyskinesia.


Assuntos
Corpo Estriado/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Benzotiazóis/efeitos adversos , Benzotiazóis/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Discinesia Induzida por Medicamentos/complicações , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Levodopa/efeitos adversos , Levodopa/farmacologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Pramipexol , Ratos , Ratos Wistar , Receptores de Dopamina D3/metabolismo
10.
J Neurosci ; 32(27): 9248-64, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22764233

RESUMO

α-Synuclein (α-syn) plays a prominent role in the degeneration of midbrain dopaminergic (mDA) neurons in Parkinson's disease (PD). However, only a few studies on α-syn have been performed in the mDA neurons in vivo, which may be attributed to a lack of α-syn transgenic mice that develop PD-like severe degeneration of mDA neurons. To gain mechanistic insights into the α-syn-induced mDA neurodegeneration, we generated a new line of tetracycline-regulated inducible transgenic mice that overexpressed the PD-related α-syn A53T missense mutation in the mDA neurons. Here we show that the mutant mice developed profound motor disabilities and robust mDA neurodegeneration, resembling some key motor and pathological phenotypes of PD. We also systematically examined the subcellular abnormalities that appeared in the mDA neurons of mutant mice and observed a profound decrease of dopamine release, the fragmentation of Golgi apparatus, and the impairments of autophagy/lysosome degradation pathways in these neurons. To further understand the specific molecular events leading to the α-syn-dependent degeneration of mDA neurons, we found that overexpression of α-syn promoted a proteasome-dependent degradation of nuclear receptor-related 1 protein (Nurr1), whereas inhibition of Nurr1 degradation ameliorated the α-syn-induced loss of mDA neurons. Given that Nurr1 plays an essential role in maintaining the normal function and survival of mDA neurons, our studies suggest that the α-syn-mediated suppression of Nurr1 protein expression may contribute to the preferential vulnerability of mDA neurons in the pathogenesis of PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Degeneração Neural/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Transtornos Parkinsonianos/genética , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Progressão da Doença , Neurônios Dopaminérgicos/patologia , Feminino , Células HEK293 , Humanos , Masculino , Mesencéfalo/patologia , Mesencéfalo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Degeneração Neural/etiologia , Degeneração Neural/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/patologia , Cultura Primária de Células , alfa-Sinucleína/fisiologia
11.
Brain ; 135(Pt 6): 1884-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561640

RESUMO

Although patients with Parkinson's disease show impairments in cognitive performance even at the early stage of the disease, the synaptic mechanisms underlying cognitive impairment in this pathology are unknown. Hippocampal long-term potentiation represents the major experimental model for the synaptic changes underlying learning and memory and is controlled by endogenous dopamine. We found that hippocampal long-term potentiation is altered in both a neurotoxic and transgenic model of Parkinson's disease and this plastic alteration is associated with an impaired dopaminergic transmission and a decrease of NR2A/NR2B subunit ratio in synaptic N-methyl-d-aspartic acid receptors. Deficits in hippocampal-dependent learning were also found in hemiparkinsonian and mutant animals. Interestingly, the dopamine precursor l-DOPA was able to restore hippocampal synaptic potentiation via D1/D5 receptors and to ameliorate the cognitive deficit in parkinsonian animals suggesting that dopamine-dependent impairment of hippocampal long-term potentiation may contribute to cognitive deficits in patients with Parkinson's disease.


Assuntos
Hipocampo/fisiopatologia , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Análise de Variância , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Benserazida/farmacologia , Benserazida/uso terapêutico , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdiálise/métodos , Mutação/genética , Oxidopamina/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Técnicas de Patch-Clamp , Cintilografia , Ratos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Simpatolíticos/toxicidade , Sinaptossomos/diagnóstico por imagem , Sinaptossomos/efeitos dos fármacos , Trítio/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
12.
NPJ Parkinsons Dis ; 9(1): 35, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36879021

RESUMO

Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.

13.
J Neurosci ; 31(35): 12513-22, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21880913

RESUMO

Striatal medium spiny neurons (MSNs) are divided into two subpopulations exerting distinct effects on motor behavior. Transgenic mice carrying bacterial artificial chromosome (BAC) able to confer cell type-specific expression of enhanced green fluorescent protein (eGFP) for dopamine (DA) receptors have been developed to characterize differences between these subpopulations. Analysis of these mice, in contrast with original pioneering studies, showed that striatal long-term depression (LTD) was expressed in indirect but not in the direct pathway MSNs. To address this mismatch, we applied a new approach using combined BAC technology and receptor immunohistochemistry. We demonstrate that, in physiological conditions, DA-dependent LTD is expressed in both pathways showing that the lack of synaptic plasticity found in D(1) eGFP mice is associated to behavioral deficits. Our findings suggest caution in the use of this tool and indicate that the "striatal segregation" hypothesis might not explain all synaptic dysfunctions in Parkinson's disease.


Assuntos
Corpo Estriado/patologia , Dopamina/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Doença de Parkinson/patologia , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Fenômenos Biofísicos , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Proteínas de Fluorescência Verde/genética , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/genética , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Ratos , Ratos Wistar , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D2/deficiência , Substância P/metabolismo
14.
Brain ; 134(Pt 2): 375-87, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21183486

RESUMO

The aim of the present study was to evaluate the role of the nitric oxide/cyclic guanosine monophosphate pathway in corticostriatal long-term depression induction in a model of levodopa-induced dyskinesia in experimental parkinsonism. Moreover, we have also analysed the possibility of targeting striatal phosphodiesterases to reduce levodopa-induced dyskinesia. To study synaptic plasticity in sham-operated rats and in 6-hydroxydopamine lesioned animals chronically treated with therapeutic doses of levodopa, recordings from striatal spiny neurons were taken using either intracellular recordings with sharp electrodes or whole-cell patch clamp techniques. Behavioural analysis of levodopa-induced abnormal involuntary movements was performed before and after the treatment with two different inhibitors of phosphodiesterases, zaprinast and UK-343664. Levodopa-induced dyskinesia was associated with the loss of long-term depression expression at glutamatergic striatal synapses onto spiny neurons. Both zaprinast and UK-343664 were able to rescue the induction of this form of synaptic plasticity via a mechanism requiring the modulation of intracellular cyclic guanosine monophosphate levels. This effect on synaptic plasticity was paralleled by a significant reduction of abnormal movements following intrastriatal injection of phosphodiesterase inhibitors. Our findings suggest that drugs selectively targeting phosphodiesterases can ameliorate levodopa-induced dyskinesia, possibly by restoring physiological synaptic plasticity in the striatum. Future studies exploring the possible therapeutic effects of phosphodiesterase inhibitors in non-human primate models of Parkinson's disease and the involvement of striatal synaptic plasticity in these effects remain necessary to validate this hypothesis.


Assuntos
Corpo Estriado/enzimologia , Corpo Estriado/fisiologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/enzimologia , Levodopa/efeitos adversos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , GMP Cíclico/farmacologia , GMP Cíclico/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Microinjeções , Neurônios/fisiologia , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Inibidores de Fosfodiesterase/administração & dosagem , Piperazinas/farmacologia , Purinonas/farmacologia , Pirimidinonas/farmacologia , Ratos , Ratos Wistar
15.
Brain Pathol ; 32(2): e13036, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806235

RESUMO

Misfolded α-synuclein spreads along anatomically connected areas through the brain, prompting progressive neurodegeneration of the nigrostriatal pathway in Parkinson's disease. To investigate the impact of early stage seeding and spreading of misfolded α-synuclein along with the nigrostriatal pathway, we studied the pathophysiologic effect induced by a single acute α-synuclein preformed fibrils (PFFs) inoculation into the midbrain. Further, to model the progressive vulnerability that characterizes the dopamine (DA) neuron life span, we used two cohorts of mice with different ages: 2-month-old (young) and 5-month-old (adult) mice. Two months after α-synuclein PFFs injection, we found that striatal DA release decreased exclusively in adult mice. Adult DA neurons showed an increased level of pathology spreading along with the nigrostriatal pathway accompanied with a lower volume of α-synuclein deposition in the midbrain, impaired neurotransmission, rigid DA terminal composition, and less microglial reactivity compared with young neurons. Notably, preserved DA release and increased microglial coverage in the PFFs-seeded hemisphere coexist with decreased large-sized terminal density in young DA neurons. This suggests the presence of a targeted pruning mechanism that limits the detrimental effect of α-synuclein early spreading. This study suggests that the impact of the pathophysiology caused by misfolded α-synuclein spreading along the nigrostriatal pathway depends on the age of the DA network, reducing striatal DA release specifically in adult mice.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Corpo Estriado/patologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
16.
Front Aging Neurosci ; 14: 909586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936777

RESUMO

All clinical BACE1-inhibitor trials for the treatment of Alzheimer's Disease (AD) have failed due to insufficient efficacy or side effects like worsening of cognitive symptoms. However, the scientific evidence to date suggests that BACE1-inhibition could be an effective preventative measure if applied prior to the accumulation of amyloid-beta (Aß)-peptide and resultant impairment of synaptic function. Preclinical studies have associated BACE1-inhibition-induced cognitive deficits with decreased dendritic spine density. Therefore, we investigated dose-dependent effects of BACE1-inhibition on hippocampal dendritic spine dynamics in an APP knock-in mouse line for the first time. We conducted in vivo two-photon microscopy in the stratum oriens layer of hippocampal CA1 neurons in 3.5-month-old App NL-G-F GFP-M mice over 6 weeks to monitor the effect of potential preventive treatment with a high and low dose of the BACE1-inhibitor NB-360 on dendritic spine dynamics. Structural spine plasticity was severely impaired in untreated App NL-G-F GFP-M mice, although spines were not yet showing signs of degeneration. Prolonged high-dose BACE1-inhibition significantly enhanced spine formation, improving spine dynamics in the AD mouse model. We conclude that in an early AD stage characterized by low Aß-accumulation and no irreversible spine loss, BACE1-inhibition could hold the progressive synapse loss and cognitive decline by improving structural spine dynamics.

17.
J Neurosci ; 30(42): 14182-93, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20962239

RESUMO

A correct interplay between dopamine (DA) and glutamate is essential for corticostriatal synaptic plasticity and motor activity. In an experimental model of Parkinson's disease (PD) obtained in rats, the complete depletion of striatal DA, mimicking advanced stages of the disease, results in the loss of both forms of striatal plasticity: long-term potentiation (LTP) and long-term depression (LTD). However, early PD stages are characterized by an incomplete reduction in striatal DA levels. The mechanism by which this incomplete reduction in DA level affects striatal synaptic plasticity and glutamatergic synapses is unknown. Here we present a model of early PD in which a partial denervation, causing mild motor deficits, selectively affects NMDA-dependent LTP but not LTD and dramatically alters NMDA receptor composition in the postsynaptic density. Our findings show that DA decrease influences corticostriatal synaptic plasticity depending on the level of depletion. The use of the TAT2A cell-permeable peptide, as an innovative therapeutic strategy in early PD, rescues physiological NMDA receptor composition, synaptic plasticity, and motor behavior.


Assuntos
Denervação , Dopamina/fisiologia , Neostriado/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Western Blotting , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Membro Anterior/fisiologia , Imuno-Histoquímica , Masculino , Microinjeções , Microscopia Confocal , Transtornos das Habilidades Motoras/patologia , Transtornos das Habilidades Motoras/psicologia , Neostriado/citologia , Oxidopamina , Ratos , Ratos Wistar , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/biossíntese , Substância Negra/fisiologia , Simpatolíticos , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Hippocampus ; 21(3): 298-308, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20087885

RESUMO

Mice born from high care-giving females show, as adults, low anxiety levels, decreased responsiveness to stress, and substantial improvements in cognitive function and hippocampal plasticity. Given the relevance of this issue for preventing emotional and cognitive abnormalities in high-risk subjects, this study examines the possibility to further enhance the beneficial effects observed in the progeny by augmenting maternal care beyond the highest levels females can display in standard laboratory conditions. This was produced by placing a second female with the dam and its litter in the rearing cage from the partum until pups weaning. Maternal behavior of all females was scored during the first week postpartum, and behavioral indices of emotionality, prestress and poststress corticosterone levels, cognitive performance, and hippocampal morphology were assessed in the adult offspring. We found that pups reared by female dyads received more maternal care than pups reared by dams alone, but as adults, they did not exhibit alterations in emotionality or corticosterone response estimated in basal condition or following restraint stress. Conversely, they showed enhanced performance in hippocampal-dependent tasks including long-term object discrimination, reactivity to spatial change, and fear conditioning together with an increase in dendritic length and spine density in the CA1 region of the hippocampus. In general, the beneficial effects of dyadic maternal care were stronger when both the females were lactating. This study demonstrates that double-mothering exerts a long-term positive control on cognitive function and hippocampal neuronal connectivity. This experimental manipulation, especially if associated with increased feeding, might offer a concrete possibility to limit or reverse the consequences of negative predisposing conditions for normal cognitive development.


Assuntos
Comportamento Animal/fisiologia , Região CA1 Hipocampal , Cognição/fisiologia , Espinhas Dendríticas/metabolismo , Comportamento Materno/fisiologia , Estresse Psicológico , Córtex Visual , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Corticosterona/sangue , Feminino , Abrigo para Animais , Lactação/fisiologia , Masculino , Comportamento Materno/psicologia , Camundongos , Mães , Período Pós-Parto , Gravidez , Córtex Visual/citologia , Córtex Visual/metabolismo
19.
Brain Commun ; 3(4): fcab273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34877534

RESUMO

Considerable fluctuations in cognitive performance and eventual dementia are an important characteristic of alpha-synucleinopathies, such as Parkinson's disease and Lewy Body dementia and are linked to cortical dysfunction. The presence of misfolded and aggregated alpha-synuclein in the cerebral cortex of patients has been suggested to play a crucial role in this process. However, the consequences of a-synuclein accumulation on the function of cortical networks at cellular resolution in vivo are largely unknown. Here, we induced robust a-synuclein pathology in the cerebral cortex using the striatal seeding model in wild-type mice. Nine months after a single intrastriatal injection of a-synuclein preformed fibrils, we observed profound alterations of the function of layer 2/3 cortical neurons in somatosensory cortex by in vivo two-photon calcium imaging in awake mice. We detected increased spontaneous activity levels, an enhanced response to whisking and increased synchrony. Stereological analyses revealed a reduction in glutamic acid decarboxylase 67-positive inhibitory neurons in the somatosensory cortex of mice injected with preformed fibrils. Importantly, these findings point to a disturbed excitation/inhibition balance as a relevant driver of circuit dysfunction, potentially underlying cognitive changes in alpha-synucleinopathies.

20.
Biochem Soc Trans ; 38(2): 493-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298209

RESUMO

In neuronal circuits, memory storage depends on activity-dependent modifications in synaptic efficacy, such as LTD (long-term depression) and LTP (long-term potentiation), the two main forms of synaptic plasticity in the brain. In the nucleus striatum, LTD and LTP represent key cellular substrates for adaptive motor control and procedural memory. It has been suggested that their impairment could account for the onset and progression of motor symptoms of PD (Parkinson's disease), a neurodegenerative disorder characterized by the massive degeneration of dopaminergic neurons projecting to the striatum. In fact, a peculiar aspect of striatal plasticity is the modulation exerted by DA (dopamine) on LTP and LTD. Our understanding of these maladaptive forms of plasticity has mostly come from the electrophysiological, molecular and behavioural analyses of experimental animal models of PD. In PD, a host of cellular and synaptic changes occur in the striatum in response to the massive loss of DA innervation. Chronic L-dopa therapy restores physiological synaptic plasticity and behaviour in treated PD animals, but most of them, similarly to patients, exhibit a reduction in the efficacy of the drug and disabling AIMs (abnormal involuntary movements) defined, as a whole, as L-dopa-induced dyskinesia. In those animals experiencing AIMs, synaptic plasticity is altered and is paralleled by modifications in the postsynaptic compartment. In particular, dysfunctions in trafficking and subunit composition of NMDARs [NMDA (N-methyl-D-aspartate) receptors] on striatal efferent neurons result from chronic non-physiological dopaminergic stimulation and contribute to the pathogenesis of dyskinesias. According to these pathophysiological concepts, therapeutic strategies targeting signalling proteins coupled to NMDARs within striatal spiny neurons could represent new pharmaceutical interventions for PD and L-dopa-induced dyskinesia.


Assuntos
Doença de Parkinson/fisiopatologia , Sinapses/fisiologia , Animais , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/uso terapêutico , Gânglios da Base/patologia , Gânglios da Base/fisiologia , Gânglios da Base/fisiopatologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Discinesias/etiologia , Humanos , Levodopa/efeitos adversos , Levodopa/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/patologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa