RESUMO
Exosomes from senescence cells play pivotal roles in endothelium dysfunction. We investigated the exosomal angiogenic cargo of endothelial cells (ECs) in a model of senescence in vitro. After inducing aging by H2O2, the expression of P53, P21, and P16 was investigated by western blotting, while the expression of FMR1, miR-21, and miR-126 were measured by real-time PCR (q-PCR). Oil Red O dye was used to stain cells. Acetylcholinesterase (AChE) assay, transmission electron microscopy (TEM), and western blotting characterized Exosomes. Exosomal miR-21, miR-126, matrix metallopeptidase-9 (MMP-9), and tumor necrosis factor- É (TNF-É) proteins were measured by Q-PCR and western blotting. A wound-healing assay was used to explore the effect of exosomes on ECs migration rate. The results showed that the expression of P53, P21, P16, FMR1, and miR-21 was increased in treated cells as compared with control cells (P < 0.05). In addition, the expression of miR-126 was decreased in treated cells (P < 0.05). The number of Oil Red O-positive-treated cells increased (P < 0.05). The AChE activity of exosomes from treated cells was increased (P < 0.05). In comparison with control cells, an increase in the expression levels of exosomal miR-21 and TNF-É of treated cells coincided with a decrease in the expression levels of miR-126 and MMP-9 levels (P < 0.05). We found that the migration rate of ECs co-cultured with exosomes from treated cells was decreased (P < 0.05). The data indicate ECs under H2O2 condition produce exosomes with distinct cargo that may be useful as a biomarker of age-related vascular disease.
Assuntos
Exossomos , MicroRNAs , Acetilcolinesterase/metabolismo , Proliferação de Células , Exossomos/genética , Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
The continuous growing, spreading, and metastasis of tumor cells depend on intercellular communication within cells resident in a tissue environment. Such communication is mediated through the secretion of particles from tumor cells and resident cells known as extracellular vesicles (EVs) within a microenvironment. EVs are a heterogeneous population of membranous vesicles released from tumor cells that transfer many types of active biomolecules to recipient cells and induce physiologic and phenotypic alterations in the tissue environment. Spreading the 'seeds' of metastasis needs the EVs that qualify the 'soil' at distant sites to promote the progress of arriving tumor cells. Growing evidence indicates that EVs have vital roles in tumorigenesis, including pre-metastatic niche formation and organotropic metastasis. These EVs mediate organotropic metastasis by modifying the pre-metastatic microenvironment through different pathways including induction of phenotypic alternation and differentiation of cells, enrolment of distinct supportive stromal cells, up-regulation of the expression of pro-inflammatory genes, and induction of immunosuppressive status. However, instead of pre-metastatic niche formation, evidence suggests that EVs may mediate reawakening of dormant niches. Findings regarding EVs function in tumor metastasis have led to growing interests in the interdisciplinary significance of EVs, including targeted therapy, cell-free therapy, drug-delivery system, and diagnostic biomarker. In this review, we discuss EVs-mediated pre-metastatic niche formation and organotropic metastasis in visceral such as lung, liver, brain, lymph node, and bone with a focus on associated signaling, causing visceral environment hospitable for metastatic cells. Furthermore, we present an overview of the possible therapeutic application of EVs in cancer management.