Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
JBMR Plus ; 6(1): e10550, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35079672

RESUMO

Long-duration spaceflight is associated with an increased risk of urolithiasis, and the pain caused by urinary calculi could result in loss of human performance and mission objectives. The present study investigated the risk of urolithiasis in astronauts during 6 months on the International Space Station, and evaluated whether the suppression of bone resorption by the bisphosphonate, alendronate (ALN), can reduce the risk. A total of 17 astronauts were included into the analysis: exercise using the advanced resistive exercise device (ARED) plus weekly oral 70 mg alendronate (ARED+ALN group, n = 7) was compared to resistive exercise alone (ARED group, n = 10). Urine volume decreased in both groups during spaceflight but recovered after return. The ARED group showed increased urinary calcium excretion from the 15th to 30th day of spaceflight, whereas urinary calcium was slightly decreased in the ARED+ALN group. Urinary N-terminal telopeptide (NTX) and helical peptide (HP) of type I collagen, as bone resorption markers, were elevated in the ARED group during and until 0 days after spaceflight, while there was no elevation in these parameters in the ARED+ALN group. Urinary oxalate and uric acid excretion tended to be higher in the ARED group than in the ARED+ALN group during spaceflight. These results demonstrate that astronauts on long-duration spaceflights may be at high risk for the formation of urinary calcium oxalate and calcium phosphate stones through increased urinary excretion of oxalate and uric acid, from degraded type I collagen, as well as of calcium from enhanced bone resorption. Our findings suggest that increased bone resorption during spaceflight, as a risk factor for urinary calculus formation, could be effectively prevented by an inhibitor of bone resorption. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Bone ; 42(3): 572-81, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18249055

RESUMO

Bone loss associated with disuse during bed rest (BR), an analog of space flight, can be attenuated by exercise. In previous studies, the efficacy of either aerobic or resistive exercise countermeasures has been examined separately. We hypothesized that a regimen of combined resistive and aerobic exercise during BR would prevent bone resorption and promote bone formation. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 degrees head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) performed no countermeasure. Exercise subjects (EX, n=8) participated in an exercise program during BR, alternating between supine treadmill exercise within lower body negative pressure (3-4 d wk(-1)) and flywheel resistive exercise (2-3 d wk(-1)). By the last week of BR, excretion of helical peptide (CON, 79%+/-44 increase; EX, 64%+/-50, mean+/-SD) and N-terminal cross-linking telopeptide (CON, 51%+/-34; EX, 43%+/-56), markers of bone resorption, were greater than they were before BR in both groups (P<0.05). However, serum concentrations of the bone formation marker procollagen type I N propeptide were greater in EX than CON throughout and after bed rest (P<0.05), while concentrations of the bone formation marker bone alkaline phosphatase tended to be greater in EX than CON. Dual-energy X-ray absorptiometry results indicated that the exercise treatment significantly (P<0.05) attenuated loss of hip and leg bone mineral density in EX compared to CON. The combination of resistive and aerobic exercise did not prevent bone resorption but did promote bone formation, and helped mitigate the net bone loss associated with simulated microgravity.


Assuntos
Repouso em Cama/efeitos adversos , Reabsorção Óssea , Exercício Físico , Pressão Negativa da Região Corporal Inferior , Contramedidas de Ausência de Peso , Simulação de Ausência de Peso , Adulto , Biomarcadores/metabolismo , Densidade Óssea , Dieta , Terapia por Exercício , Feminino , Humanos
3.
Am J Clin Nutr ; 107(5): 834-844, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722847

RESUMO

Background: Bed rest studies document that a lower dietary acid load is associated with lower bone resorption. Objective: We tested the effect of dietary acid load on bone metabolism during spaceflight. Design: Controlled 4-d diets with a high or low animal protein-to-potassium (APro:K) ratio (High and Low diets, respectively) were given to 17 astronauts before and during spaceflight. Each astronaut had 1 High and 1 Low diet session before flight and 2 High and 2 Low sessions during flight, in addition to a 4-d session around flight day 30 (FD30), when crew members were to consume their typical in-flight intake. At the end of each session, blood and urine samples were collected. Calcium, total protein, energy, and sodium were maintained in each crew member's preflight and in-flight controlled diets. Results: Relative to preflight values, N-telopeptide (NTX) and urinary calcium were higher during flight, and bone-specific alkaline phosphatase (BSAP) was higher toward the end of flight. The High and Low diets did not affect NTX, BSAP, or urinary calcium. Dietary sulfur and age were significantly associated with changes in NTX. Dietary sodium and flight day were significantly associated with urinary calcium during flight. The net endogenous acid production (NEAP) estimated from the typical dietary intake at FD30 was associated with loss of bone mineral content in the lumbar spine after the mission. The results were compared with data from a 70-d bed rest study, in which control (but not exercising) subjects' APro:K was associated with higher NTX during bed rest. Conclusions: Long-term lowering of NEAP by increasing vegetable and fruit intake may protect against changes in loss of bone mineral content during spaceflight when adequate calcium is consumed, particularly if resistive exercise is not being performed. This trial was registered at clinicaltrials.gov as NCT01713634.


Assuntos
Ácidos/metabolismo , Repouso em Cama , Osso e Ossos/metabolismo , Dieta , Voo Espacial , Adulto , Densidade Óssea/efeitos dos fármacos , Cálcio/urina , Colágeno Tipo I/metabolismo , Proteínas Alimentares/administração & dosagem , Feminino , Análise de Alimentos , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/metabolismo , Potássio/administração & dosagem
4.
J Bone Miner Res ; 20(2): 208-18, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15647814

RESUMO

UNLABELLED: Bone loss is a current limitation for long-term space exploration. Bone markers, calcitropic hormones, and calcium kinetics of crew members on space missions of 4-6 months were evaluated. Spaceflight-induced bone loss was associated with increased bone resorption and decreased calcium absorption. INTRODUCTION: Bone loss is a significant concern for the health of astronauts on long-duration missions. Defining the time course and mechanism of these changes will aid in developing means to counteract these losses during space flight and will have relevance for other clinical situations that impair weight-bearing activity. MATERIALS AND METHODS: We report here results from two studies conducted during the Shuttle-Mir Science Program. Study 1 was an evaluation of bone and calcium biochemical markers of 13 subjects before and after long-duration (4-6 months) space missions. In study 2, stable calcium isotopes were used to evaluate calcium metabolism in six subjects before, during, and after flight. Relationships between measures of bone turnover, biochemical markers, and calcium kinetics were examined. RESULTS: Pre- and postflight study results confirmed that, after landing, bone resorption was increased, as indicated by increases in urinary calcium (p < 0.05) and collagen cross-links (N-telopeptide, pyridinoline, and deoxypyridinoline were all increased >55% above preflight levels, p < 0.001). Parathyroid hormone and vitamin D metabolites were unchanged at landing. Biochemical markers of bone formation were unchanged at landing, but 2-3 weeks later, both bone-specific alkaline phosphatase and osteocalcin were significantly (p < 0.01) increased above preflight levels. In studies conducted during flight, bone resorption markers were also significantly higher than before flight. The calcium kinetic data also validated that bone resorption was increased during flight compared with preflight values (668 +/- 130 versus 427 +/- 153 mg/day; p < 0.001) and clearly documented that true intestinal calcium absorption was significantly lower during flight compared with preflight values (233 +/- 87 versus 460 +/- 47 mg/day; p < 0.01). Weightlessness had a detrimental effect on the balance in bone turnover such that the daily difference in calcium retention during flight compared with preflight values approached 300 mg/day (-234 +/- 102 versus 63 +/- 75 mg/day; p < 0.01). CONCLUSIONS: These bone marker and calcium kinetic studies indicated that the bone loss that occurs during space flight is a consequence of increased bone resorption and decreased intestinal calcium absorption.


Assuntos
Reabsorção Óssea , Osso e Ossos/patologia , Cálcio/metabolismo , Fosfatase Alcalina/metabolismo , Aminoácidos/química , Análise de Variância , Astronautas , Biomarcadores , Osso e Ossos/metabolismo , Cálcio/química , Cálcio/urina , Colágeno/química , Colágeno Tipo I , Humanos , Cinética , Osteocalcina/metabolismo , Hormônio Paratireóideo/metabolismo , Peptídeos/química , Voo Espacial , Fatores de Tempo , Vitamina D/metabolismo , Ausência de Peso
5.
Bone ; 81: 712-720, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456109

RESUMO

Bone loss and renal stone risk are longstanding concerns for astronauts. Bone resorption brought on by spaceflight elevates urinary calcium and the risk of renal stone formation. Loss of bone calcium leads to concerns about fracture risk and increased long-term risk of osteoporosis. Bone metabolism involves many factors and is interconnected with muscle metabolism and diet. We report here bone biochemistry and renal stone risk data from astronauts on 4- to 6-month International Space Station missions. All had access to a type of resistive exercise countermeasure hardware, either the Advanced Resistance Exercise Device (ARED) or the Interim Resistance Exercise Device (iRED). A subset of the ARED group also tested the bisphosphonate alendronate as a potential anti-resorptive countermeasure (Bis+ARED). While some of the basic bone marker data have been published, we provide here a more comprehensive evaluation of bone biochemistry with a larger group of astronauts. Regardless of exercise, the risk of renal stone formation increased during spaceflight. A key factor in this increase was urine volume, which was lower during flight in all groups at all time points. Thus, the easiest way to mitigate renal stone risk is to increase fluid consumption. ARED use increased bone formation without changing bone resorption, and mitigated a drop in parathyroid hormone in iRED astronauts. Sclerostin, an osteocyte-derived negative regulator of bone formation, increased 10-15% in both groups of astronauts who used the ARED (p<0.06). IGF-1, which regulates bone growth and formation, increased during flight in all 3 groups (p<0.001). Our results are consistent with the growing body of literature showing that the hyper-resorptive state of bone that is brought on by spaceflight can be countered pharmacologically or mitigated through an exercise-induced increase in bone formation, with nutritional support. Key questions remain about the effect of exercise-induced alterations in bone metabolism on bone strength and fracture risk.


Assuntos
Astronautas , Osso e Ossos/metabolismo , Cálculos Renais/etiologia , Ausência de Peso/efeitos adversos , Adulto , Alendronato/farmacologia , Biomarcadores/sangue , Biomarcadores/urina , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/prevenção & controle , Exercício Físico/fisiologia , Feminino , Humanos , Cálculos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Voo Espacial , Astronave
6.
J Bone Miner Res ; 29(7): 1639-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24470067

RESUMO

Bone loss, a key concern for long-duration space travelers, is typically considered a female issue. The number of women who have flown long-duration space missions is now great enough to allow a quantitative comparison of changes in bone and renal stone risk by sex. Participants were 42 astronauts (33 men and 9 women) on long-duration missions to the International Space Station. Bone mineral density (by dual-energy X-ray absorptiometry) and biochemical markers of bone metabolism (from blood and urine samples) were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. Missions were 49 to 215 days in duration, flown between 2000 and 2012. The bone density response to spaceflight was the same for men and women in both exercise groups. The bone mineral density response to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an advanced resistive exercise device. Biochemical markers of bone formation and resorption responded similarly in male and female astronauts. The response of urinary supersaturation risk to spaceflight was not significantly different between men and women, although risks were typically increased after flight in both groups, and risks were greater in men than in women before and after flight. The responses of men and women to spaceflight with respect to these measures of bone health were not different.


Assuntos
Reabsorção Óssea/complicações , Reabsorção Óssea/etiologia , Meio Ambiente Extraterreno , Cálculos Renais/complicações , Cálculos Renais/etiologia , Voo Espacial , Biomarcadores/metabolismo , Densidade Óssea , Reabsorção Óssea/fisiopatologia , Reabsorção Óssea/urina , Cálcio/metabolismo , Feminino , Humanos , Cálculos Renais/fisiopatologia , Cálculos Renais/urina , Masculino , Fatores de Risco , Fatores de Tempo
7.
Physiol Rep ; 2(8)2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25107989

RESUMO

The purpose of this study was to directly assess sex differences in bone loss, bone biochemistry, and renal stone risk in bed rest. Bed rest simulates some spaceflight effects on human physiology and can be used to address the potential existence of sex-specific effects on bone metabolism and renal stone risk in space. We combined data from the control subjects in five head-down-tilt bed rest studies (combined n = 50 men, 24 women) of differing durations (14-90 days). All subjects were healthy volunteers. Mean age was 35 ± 9 years for women and 33 ± 8 years for men. The main outcome measures were bone density and biochemistry, and renal stone risk chemistry. Before bed rest began, men had higher bone mineral density and content (P < 0.001), and excreted more biomarkers of bone resorption and calcium per day than did women (P < 0.05). These differences remained during bed rest. A number of urine chemistry analytes increased (e.g., calcium) or decreased (e.g., sodium, citrate, and urine volume) significantly for men and women during bed rest. These changes may predispose men to higher stone risk. Men and women do not have substantially different responses to the skeletal unloading of bed rest.

8.
J Bone Miner Res ; 27(9): 1896-906, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22549960

RESUMO

Exercise has shown little success in mitigating bone loss from long-duration spaceflight. The first crews of the International Space Station (ISS) used the "interim resistive exercise device" (iRED), which allowed loads of up to 297 lb(f) (or 1337 N) but provided little protection of bone or no greater protection than aerobic exercise. In 2008, the Advanced Resistive Exercise Device (ARED), which allowed absolute loads of up to 600 lb(f) (1675 N), was launched to the ISS. We report dietary intake, bone densitometry, and biochemical markers in 13 crewmembers on ISS missions from 2006 to 2009. Of these 13, 8 had access to the iRED and 5 had access to the ARED. In both groups, bone-specific alkaline phosphatase tended to increase during flight toward the end of the mission (p = 0.06) and increased 30 days after landing (p < 0.001). Most markers of bone resorption were also increased in both groups during flight and 30 days after landing (p < 0.05). Bone densitometry revealed significant interactions (time and exercise device) for pelvis bone mineral density (BMD) and bone mineral content (p < 0.01), hip femoral neck BMD (p < 0.05), trochanter BMD (p < 0.05), and total hip BMD (p < 0.05). These variables were unchanged from preflight only for ARED crewmembers, who also returned from flight with higher percent lean mass and lower percent fat mass. Body mass was unchanged after flight in both groups. All crewmembers had nominal vitamin D status (75 ± 17 nmol/L) before and during flight. These data document that resistance exercise, coupled with adequate energy intake (shown by maintenance of body mass determined by dual-energy X-ray absorptiometry [DXA]) and vitamin D, can maintain bone in most regions during 4- to 6-month missions in microgravity. This is the first evidence that improving nutrition and resistance exercise during spaceflight can attenuate the expected BMD deficits previously observed after prolonged missions.


Assuntos
Fenômenos Bioquímicos , Osso e Ossos/fisiologia , Densitometria/métodos , Exercício Físico/fisiologia , Fenômenos Fisiológicos da Nutrição , Treinamento Resistido , Voo Espacial , Biomarcadores/sangue , Biomarcadores/urina , Composição Corporal/fisiologia , Densidade Óssea/fisiologia , Cálcio/metabolismo , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hormônio Paratireóideo/sangue , Pelve/fisiologia , Fatores de Tempo , Vitamina D/análogos & derivados , Vitamina D/sangue
9.
Clin Chem ; 53(6): 1155-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17463176

RESUMO

BACKGROUND: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. METHODS: Calcium isotopic compositions are expressed as delta(44)Ca, or the difference in parts per thousand between the (44)Ca/(40)Ca of a sample and the (44)Ca/(40)Ca of a standard reference material. delta(44)Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. RESULTS: Urine delta(44)Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, t-test). Results were consistent with the model and with biochemical and bone mineral density data. CONCLUSION: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool.


Assuntos
Densidade Óssea , Osso e Ossos/química , Isótopos de Cálcio/urina , Cálcio/urina , Alendronato/uso terapêutico , Biomarcadores/urina , Desmineralização Patológica Óssea/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Osso e Ossos/metabolismo , Exercício Físico , Humanos , Simulação de Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa