Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 78(1): 96-111.e6, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32105612

RESUMO

Current models suggest that chromosome domains segregate into either an active (A) or inactive (B) compartment. B-compartment chromatin is physically separated from the A compartment and compacted by the nuclear lamina. To examine these models in the developmental context of C. elegans embryogenesis, we undertook chromosome tracing to map the trajectories of entire autosomes. Early embryonic chromosomes organized into an unconventional barbell-like configuration, with two densely folded B compartments separated by a central A compartment. Upon gastrulation, this conformation matured into conventional A/B compartments. We used unsupervised clustering to uncover subpopulations with differing folding properties and variable positioning of compartment boundaries. These conformations relied on tethering to the lamina to stretch the chromosome; detachment from the lamina compacted, and allowed intermingling between, A/B compartments. These findings reveal the diverse conformations of early embryonic chromosomes and uncover a previously unappreciated role for the lamina in systemic chromosome stretching.


Assuntos
Caenorhabditis elegans/genética , Cromossomos/química , Lâmina Nuclear/fisiologia , Animais , Caenorhabditis elegans/embriologia , Cromossomos/ultraestrutura , Embrião não Mamífero/ultraestrutura , Gastrulação/genética , Hibridização in Situ Fluorescente , Conformação Molecular
2.
Development ; 144(16): 2982-2993, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705896

RESUMO

Caudal somites are generated from a pool of progenitor cells located in the tailbud region. These progenitor cells form the presomitic mesoderm that gradually differentiates into somites under the action of the segmentation clock. The signals responsible for tailbud mesoderm progenitor pool maintenance during axial elongation are still elusive. Here, we show that Bmp signaling is sufficient to activate the entire mesoderm progenitor gene signature in primary cultures of caudal mesoderm cells. Bmp signaling acts through the key regulatory genes brachyury (T) and Nkx1-2 and contributes to the activation of several other regulators of the mesoderm progenitor gene network. In the absence of Bmp signaling, tailbud mesoderm progenitor cells acquire aberrant gene expression signatures of the heart, blood, muscle and skeletal embryonic lineages. Treatment of embryos with the Bmp inhibitor noggin confirmed the requirement for Bmp signaling for normal T expression and the prevention of abnormal lineage marker activation. Together, these results identify Bmp signaling as a non-cell-autonomous signal necessary for mesoderm progenitor cell homeostasis.


Assuntos
Mesoderma/citologia , Mesoderma/embriologia , Células-Tronco/metabolismo , Cauda/citologia , Cauda/embriologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Cauda/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(43): E9016-E9025, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073098

RESUMO

The elimination of unwanted cells by apoptosis is necessary for tissue morphogenesis. However, the cellular control of morphogenetic apoptosis is poorly understood, notably the modulation of cell sensitivity to apoptotic stimuli. Ureter maturation, the process by which the ureter is displaced to the bladder wall, represents an exquisite example of morphogenetic apoptosis, requiring the receptor protein tyrosine phosphatases (RPTPs): LAR and RPTPσ. Here we show that LAR-RPTPs act through cellular inhibitor of apoptosis protein 1 (cIAP1) to modulate caspase 3,7-mediated ureter maturation. Pharmacologic or genetic inactivation of cIAP1 reverts the apoptotic deficit of LAR-RPTP-deficient embryos. Moreover, Birc2 (cIAP1) inactivation generates excessive apoptosis leading to vesicoureteral reflux in newborns, which underscores the importance of apoptotic modulation during urinary tract morphogenesis. We finally demonstrate that LAR-RPTP deficiency increases cIAP1 stability during apoptotic cell death. Together these results identify a mode of cIAP1 regulation playing a critical role in the cellular response to apoptotic pathway activation in the embryo.


Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Ureter/embriologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Células Cultivadas , Embrião de Mamíferos , Fibroblastos/fisiologia , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ureter/metabolismo
4.
PLoS Genet ; 12(2): e1005785, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26859289

RESUMO

Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.


Assuntos
Cílios/metabolismo , Proteínas Ativadoras de GTPase/genética , Doenças Renais Císticas/genética , Glomérulos Renais/patologia , Organogênese , Mutação Puntual/genética , Proteínas Repressoras/genética , Actinas/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Citoesqueleto/metabolismo , Embrião de Mamíferos/citologia , Etilnitrosoureia , Feminino , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Doenças Renais Císticas/patologia , Glomérulos Renais/metabolismo , Túbulos Renais/anormalidades , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Defeitos do Tubo Neural/patologia , Fenótipo , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes
5.
Nat Ecol Evol ; 6(1): 63-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34824389

RESUMO

Hundreds of cell types form the vertebrate brain but it is largely unknown how similar cellular repertoires are between or within species or how cell-type diversity evolves. To examine cell-type diversity across and within species, we performed single-cell RNA sequencing of ~130,000 hypothalamic cells from zebrafish (Danio rerio) and surface and cave morphs of Mexican tetra (Astyanax mexicanus). We found that over 75% of cell types were shared between zebrafish and Mexican tetra, which diverged from a common ancestor over 150 million years ago. Shared cell types displayed shifts in paralogue expression that were generated by subfunctionalization after genome duplication. Expression of terminal effector genes, such as neuropeptides, was more conserved than the expression of their associated transcriptional regulators. Species-specific cell types were enriched for the expression of species-specific genes and characterized by the neofunctionalization of expression patterns of members of recently expanded or contracted gene families. Comparisons between surface and cave morphs revealed differences in immune repertoires and transcriptional changes in neuropeptidergic cell types associated with genomic differences. The single-cell atlases presented here are a powerful resource to explore hypothalamic cell types and reveal how gene family evolution and shifts in paralogue expression contribute to cellular diversity.


Assuntos
Characidae , Peixe-Zebra , Animais , Evolução Biológica , Cavernas , Characidae/genética , Hipotálamo , Peixe-Zebra/genética
6.
Front Cell Dev Biol ; 7: 175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552245

RESUMO

The ability to profile hundreds of thousands to millions of single cells using scRNA-sequencing has revolutionized the fields of cell and developmental biology, providing incredible insights into the diversity of forms and functions of cell types across many species. These technologies hold the promise of developing detailed cell type phylogenies which can describe the evolutionary and developmental relationships between cell types across species. This will require sampling of many species and taxa using single-cell transcriptomics, and methods to classify cell type homologies and diversifications. Many tools currently exist for analyzing single cell data and identifying cell types. However, cross-species comparisons are complicated by many biological and technical factors. These factors include batch effects common to deep-sequencing approaches, well known evolutionary relationships between orthologous and paralogous genes, and less well-understood evolutionary forces shaping transcriptome variation between species. In this review, I discuss recent developments in computational methods for the comparison of single-cell-omic data across species. These approaches have the potential to provide invaluable insight into how evolutionary forces act at the level of the cell and will further our understanding of the evolutionary origins of animal and cellular diversity.

7.
Stem Cell Reports ; 8(4): 1018-1031, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28285879

RESUMO

During prostate development, basal and luminal cell lineages are generated through symmetric and asymmetric divisions of bipotent basal cells. However, the extent to which spindle orientation controls division symmetry or cell fate, and the upstream factors regulating this process, are still elusive. We report that GATA3 is expressed in both prostate basal progenitor and luminal cells and that loss of GATA3 leads to a mislocalization of PRKCZ, resulting in mitotic spindle randomization during progenitor cell division. Inherently proliferative intermediate progenitor cells accumulate, leading to an expansion of the luminal compartment. These defects ultimately result in a loss of tissue polarity and defective branching morphogenesis. We further show that disrupting the interaction between PRKCZ and PARD6B is sufficient to recapitulate the spindle and cell lineage phenotypes. Collectively, these results identify a critical role for GATA3 in prostate lineage specification, and further highlight the importance of regulating spindle orientation for hierarchical cell lineage organization.


Assuntos
Células Epiteliais/citologia , Fator de Transcrição GATA3/metabolismo , Próstata/crescimento & desenvolvimento , Fuso Acromático/metabolismo , Células-Tronco/citologia , Animais , Polaridade Celular , Células Epiteliais/metabolismo , Fator de Transcrição GATA3/análise , Fator de Transcrição GATA3/genética , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Próstata/citologia , Próstata/ultraestrutura , Proteína Quinase C/análise , Proteína Quinase C/metabolismo , Fuso Acromático/genética , Fuso Acromático/ultraestrutura , Células-Tronco/metabolismo
8.
Gene Expr Patterns ; 11(8): 511-6, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21920462

RESUMO

Development in the frog, Xenopus laevis, requires the utilization of yolk glyco-lipo-proteins in a temporally- and spatially-dependent manner. The metabolism of the yolk produces hydrogen peroxide (H(2)O(2)), a potent reactive oxygen species (ROS). Peroxiredoxins (prdxs) are a family of six anti-oxidant enzymes that, amongst other roles, reduce H(2)O(2). Prdxs reduce H(2)O(2) through a thiol-redox reaction at conserved cysteine residues which results in the creation of disulfide bonds. Recently the thiol-redox reaction of Prdxs has also been implicated in several cell signaling systems. Here we report the cloning and expression patterns during development of six peroxiredoxin homologs from the frog X. laevis. Sequence analysis confirmed their identity as well as their evolutionary relationship with peroxiredoxins from several other species. Using RT-PCR and in situ hybridization analysis we have shown that there is early and robust expression of all six homologs during development. All six X. laevis peroxiredoxins are expressed in neural regions including the brain, eyes, as well as the somites. Different expression patterns for each peroxiredoxin are also observed in the pronephric region, including the proximal and distal tubules. Expression of several peroxiredoxins was also observed in the blood precursors and the olfactory placode. These results suggest important roles for all six peroxiredoxins during early development. These roles may be restricted to their functions as anti-oxidant enzymes, but may also be related to their emerging roles in redox signaling.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Família Multigênica/fisiologia , Peroxirredoxinas/biossíntese , Proteínas de Xenopus/biossíntese , Animais , Embrião não Mamífero/enzimologia , Especificidade de Órgãos/fisiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa