RESUMO
Local leaders possess significant and growing authority over refugee resettlement, yet we know little about their attitudes toward refugees. In this article, we use a conjoint experiment to evaluate how the attributes of hypothetical refugee groups influence local policymaker receptivity toward refugee resettlement. We sample from a national panel of current local elected officials, who represent a broad range of urban and rural communities across the United States. We find that many local officials favor refugee resettlement, regardless of refugee attributes. However, officials are most receptive to refugees whom they perceive as a strong economic and social fit within their communities. Our study contributes to a growing literature on individual attitudes toward refugees by systematically examining the preferences of US local elected officials and offers unique insights into the views of this influential and policy-relevant group.
RESUMO
Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus. Previous studies have indicated that the phosphodiester backbone is the main antigenic target, with electrostatic interactions important for high avidity. To define further these interactions, the effects of ionic strength on anti-DNA binding of SLE plasmas were assessed in association and dissociation assays by ELISA. As these studies demonstrated, increasing ionic strength to a concentration of 1000 mM NaCl reduced antibody binding although the extent of the reduction varied among samples. In dissociation assays, differences among plasmas were also observed. For one of the plasmas, binding to DNA displayed resistance to dissociation by increasing ionic strength even though these concentrations limited binding in association assays. Time course studies showed a gradual change in binding interactions. These studies indicate that anti-DNA binding can involve both electrostatic and non-electrostatic interactions, with binding in some plasmas showing evidence of hysteresis.
Assuntos
Anticorpos Antinucleares/imunologia , Afinidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/imunologia , DNA/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Anticorpos Antinucleares/química , Complexo Antígeno-Anticorpo/química , Autoantígenos/imunologia , Humanos , Concentração OsmolarRESUMO
NF-κB essential modulator (NEMO) regulates NF-κB signaling by acting as a scaffold for the kinase IKKß to direct its activity toward the NF-κB inhibitor, IκBα. Here, we show that a highly conserved central region of NEMO termed the intervening domain (IVD, amino acids 112-195) plays a key role in NEMO function. We determined a structural model of full-length NEMO by small-angle X-ray scattering and show that full-length, wild-type NEMO becomes more compact upon binding of a peptide comprising the NEMO binding domain of IKKß (amino acids 701-745). Mutation of conserved IVD residues (9SG-NEMO) disrupts this conformational change in NEMO and abolishes the ability of NEMO to propagate NF-κB signaling in cells, although the affinity of 9SG-NEMO for IKKß compared to that of the wild type is unchanged. On the basis of these results, we propose a model in which the IVD is required for a conformational change in NEMO that is necessary for its ability to direct phosphorylation of IκBα by IKKß. Our findings suggest a molecular explanation for certain disease-associated mutations within the IVD and provide insight into the role of conformational change in signaling scaffold proteins.
Assuntos
Quinase I-kappa B/metabolismo , Sequência de Aminoácidos , Animais , Células HEK293 , Humanos , Quinase I-kappa B/química , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Transdução de Sinais , Difração de Raios XRESUMO
Lafora disease (LD) is a fatal juvenile epilepsy characterized by the accumulation of aberrant glucan aggregates called Lafora bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and proposed as a broadly applicable carrier to mediate cellular targeting and uptake. We report studies on the efficacy and CNS delivery of VAL-0417, an antibody-enzyme fusion composed of the 3E10 hFab and human pancreatic α-amylase, in a mouse model of LD. An enzyme-linked immunosorbent assay has been developed to detect VAL-0417 post-treatment as a measure of delivery efficacy. We demonstrate the robust and sensitive detection of the fusion protein in multiple tissue types. Using this method, we measured biodistribution in different methods of delivery. We found that intracerebroventricular administration provided robust CNS delivery when compared to intrathecal administration. These data define critical steps in the translational pipeline of VAL-0417 for the treatment of LD.
Assuntos
Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Doença de Lafora/tratamento farmacológico , alfa-Amilases Pancreáticas/genética , alfa-Amilases Pancreáticas/farmacocinética , Animais , Fusão Gênica Artificial/métodos , Encéfalo/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/metabolismo , Ensaio de Imunoadsorção Enzimática , Glucanos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Plasmídeos/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Distribuição Tecidual , Resultado do TratamentoRESUMO
NEMO (NF-κB essential modulator) associates with catalytic subunits IKKα and IKKß to form the IκB kinase (IKK) complex and is a key regulator of NF-κB pathway signaling. Biochemical and structural characterization of NEMO has been challenging, however, leading to conflicting data about basic biochemical properties such as the oligomeric state of active NEMO and its binding affinity for IKKß. We show that up to seven of NEMO's 11 cysteine residues can be mutated to generate recombinant full-length NEMO that is highly soluble and active. Using a fluorescence anisotropy binding assay, we show that full-length NEMO binds a 44-mer peptide encompassing residues 701-745 of IKKß with a K(D) of 2.2 ± 0.8 nM. The IKKß binding affinities of mutants with five and seven Cys-to-Ala substitutions are indistinguishable from that of wild-type NEMO. Moreover, when expressed in NEMO -/- fibroblasts, the five-Ala and seven-Ala NEMO mutants can interact with cellular IKKß and restore NF-κB signaling to provide protection against tumor necrosis factor α-induced cell death. Treatment of the NEMO-reconstituted cells with H2O2 led to the formation of covalent dimers for wild-type NEMO and the five-Ala mutant, but not for the seven-Ala mutant, confirming that Cys54 and/or Cys347 can mediate interchain disulfide bonding. However, the IKKß binding affinity of NEMO is unaffected by the presence or absence of interchain disulfide bonding at Cys54, which lies within the IKKß binding domain of NEMO, or at Cys347, indicating that NEMO exists as a noncovalent dimer independent of the redox state of its cysteines. This conclusion was corroborated by the observation that the secondary structure content of NEMO and its thermal stability were independent of the presence or absence of interchain disulfide bonds.
Assuntos
Cisteína/química , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mutantes/metabolismo , Animais , Células Cultivadas , Cistina/química , Dimerização , Humanos , Quinase I-kappa B/química , Quinase I-kappa B/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Camundongos , Camundongos Knockout , Proteínas Mutantes/química , Proteínas Mutantes/genética , Oxirredução , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade , Dedos de ZincoRESUMO
Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
Assuntos
Encéfalo/metabolismo , Glucosamina/metabolismo , Glicogênio/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glicogênio/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicogenólise/genética , Glicosilação , Doença de Lafora/genética , Doença de Lafora/metabolismo , Doença de Lafora/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional/genéticaRESUMO
The use of antibodies as targeting molecules or cell-penetrating tools has emerged at the forefront of pharmaceutical research. Antibody-directed therapies in the form of antibody-drug conjugates, immune modulators, and antibody-directed enzyme prodrugs have been most extensively utilized as hematological, rheumatological, and oncological therapies, but recent developments are identifying additional applications of antibody-mediated delivery systems. A novel application of this technology is for the treatment of glycogen storage disorders (GSDs) via an antibody-enzyme fusion (AEF) platform to penetrate cells and deliver an enzyme to the cytoplasm, nucleus, and/or other organelles. Exciting developments are currently underway for AEFs in the treatment of the GSDs Pompe disease and Lafora disease (LD). Antibody-based therapies are quickly becoming an integral part of modern disease therapeutics.
Assuntos
Anticorpos/uso terapêutico , Terapia Enzimática/métodos , Doença de Depósito de Glicogênio/tratamento farmacológico , Animais , Anticorpos/administração & dosagem , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/uso terapêutico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêuticoRESUMO
Excessive weight is connected with an increased risk of certain life-threatening diseases. However, some evidence shows that among patients with chronic diseases such as heart failure (HF) chronic kidney disease (CKD) and COPD, increased weight is paradoxically associated with a decreased risk of mortality. This counterintuitive phenomenon is referred to as the obesity paradox. The obesity paradox has been mostly observed among certain cohorts of patients with HF, but not specific to patients in the Intensive Care Unit (ICU) setting. This paper studies the relationship between obesity and mortality of ICU patients with and without HF and presents evidence supporting the existence of this paradox. The results provide helpful insights for developing more patient-centric care in ICUs. Additionally, we use both the MIMIC-II and (recently available) MIMIC-III databases, for which few comparative studies exist to date. We demonstrate an aspect of consistency between the databases, providing a significant step towards validating the use of the newly announced MIMIC-III in broader studies.
Assuntos
Obesidade , Índice de Massa Corporal , Cuidados Críticos , Insuficiência Cardíaca , Humanos , Unidades de Terapia IntensivaRESUMO
Campylobacter jejuni (CJ) is the most commonly isolated stool pathogen in the United States. Biopsy findings are typically those of focal active colitis (FAC), a nonspecific pattern usually indicating infection or adverse drug effect that is characterized by focal cryptitis and preservation of crypt architecture. We developed a molecular test for CJ that can be performed on routinely processed gastrointestinal biopsy specimens, and assessed what percentage of patients with biopsy findings of FAC have molecular evidence of CJ infection. One hundred and ten colon biopsies diagnosed as FAC were retrieved from three institutions. Polymerase chain reaction (PCR) was performed following DNA extraction; primers were designed to target a 286-bp fragment of the mapA gene that is specific to CJ. Pure genomic DNA derived from cultures served as the positive control; reagent blanks and 50 normal colon specimens served as negative controls. Nineteen percent (21/110) of the FAC biopsies were positive for CJ DNA by PCR analysis. Fourteen CJ-positive patients presented with diarrhea, 3 presented with gastrointestinal bleeding, and 3 had incidental FAC found on screening colonoscopy. Ten patients had abnormal colonoscopic findings, including erythema (4), ulcers (4), colitis (1), and hemorrhage (1). As CJ is an enteric pathogen that is not present in the gut as a commensal organism, the presence of CJ DNA suggests current or recent previous infection in these patients. CJ infection should be considered in patients with diarrhea and colon biopsies showing FAC. Furthermore, PCR analysis performed on fixed, routinely processed colon biopsies is an excellent diagnostic method for detection of this organism.
Assuntos
Infecções por Campylobacter/diagnóstico , Campylobacter jejuni/isolamento & purificação , Colite/diagnóstico , Colite/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Campylobacter/complicações , Colite/complicações , Diagnóstico Diferencial , Diarreia/etiologia , Feminino , Gastroenteropatias/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da PolimeraseRESUMO
Superoxide dismutase 1 (SOD1) knockout (Sod1-/-) mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS), and post-translational modification (PTM) of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123). The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1) in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1-/- mice, K123 mutation or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer (GCL) and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells and Schaffer collateral fibers of the cornus ammonis field 1 (CA1) region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus (CP) and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer (RGCL) and axons of retinal ganglion cells (RGCs), the inner nuclear layer (INL) and cone photoreceptors of the outer nuclear layer (ONL). In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system.