Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 36(12): 2227-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21785835

RESUMO

Stem cells are considered to be promising therapeutic options in many neuro-degenerative diseases and injuries to the central nervous system, including brain ischemia and spinal cord trauma. Apart from the gold standard embryonic and mesenchymal origin, human tooth germ stem cells (hTGSCs) have also been shown to enjoy the characteristics of mesenchymal stem cells (MSCs) and the ability to differentiate into adipo-, chondro-, osteo- and neuro-genic cells, suggesting that they might serve as potential alternatives in the cellular therapy of various maladies. Immortalization of stem cells may be useful to avoid senescence of stem cells and to increase their proliferation potential without altering their natural characteristics. This study evaluated the expression of stem cell markers, surface antigens, differentiation capacity, and karyotype of hTGSCs that have been immortalized by human telomerase reverse transcriptase (hTERT) or simian vacuolating virus 40 (SV40) large T antigen. These undying cells were also evaluated for their neuro-protective potential using an in vitro SH-SY5Y neuro-blastoma model treated with hydrogen-peroxide or doxo-rubicin. Although hTGSC-SV40 showed abnormal karyotypes, our results suggest that hTGSC-hTERT preserve their MSC characteristics, differentiation capacity and normal karyotype, and they also possess high proliferation rate and neuro-protective effects even at great passage numbers. These peculiars indicate that hTGSC-hTERT could be used as a viable model for studying adipo-, osteo-, odonto- and neuro-genesis, as well as neuro-protection of MSCs, which may serve as a springboard for potentially utilizing dental waste material in cellular therapy.


Assuntos
Antígenos Transformantes de Poliomavirus/farmacologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Fármacos Neuroprotetores/farmacologia , Telomerase/farmacologia , Germe de Dente/citologia , Adolescente , Humanos , Cariótipo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/virologia
2.
Cells ; 9(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121221

RESUMO

Despite being a biological waste, human urine contains a small population of cells with self-renewal capacity and differentiation potential into several cell types. Being derived from the convoluted tubules of nephron, renal pelvis, ureters, bladder and urethra, urine-derived stem cells (UDSC) have a similar phenotype to mesenchymal stroma cells (MSC) and can be reprogrammed into iPSC (induced pluripotent stem cells). Having simple, safer, low-cost and noninvasive collection procedures, the interest in UDSC has been growing in the last decade. With great potential in regenerative medicine applications, UDSC can also be used as biological models for pharmacology and toxicology tests. This review describes UDSC biological characteristics and differentiation potential and their possible use, including the potential of UDSC-derived iPSC to be used in drug discovery and toxicology, as well as in regenerative medicine. Being a new cellular platform amenable to noninvasive collection for disease stratification and personalized therapy could be a future application for UDSC.


Assuntos
Medicina de Precisão , Medicina Regenerativa , Células-Tronco/citologia , Urina/citologia , Animais , Modelos Animais de Doenças , Descoberta de Drogas , Humanos
3.
Eur J Pharm Biopharm ; 76(2): 253-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20685331

RESUMO

The common drawback of many in vitro cell culture systems is the absence of appropriate micro-environment, which is formed by the combination of factors such as cell-cell contacts, extracellular matrix and paracrine regulation. Micro-environmental factors in a tumor tissue can influence physiological status of the cancer cells and their susceptibility to anticancer therapies. Interaction of cancer cells with their micro-environment and regional stem cells, therefore, is of particular interest. Development of in vitro systems which allow more accurate modeling of complex relations occurring in real tumor environments can increase efficiency of preclinical assays for screening anticancer drugs. The aim of this work was to study interactions between human mesenchymal stem cells (MSCs) and neuro-blastoma cancer SH-SY5Y cells under co-culture conditions on different coated surfaces to determine the effect of co-existence of cancer and stem cells on each cellular population under various stress conditions. We developed an efficient in vitro system for studying individual cancer and stem cell populations during co-culture using differential live fluorescent membrane labeling, and demonstrated self-organization of cancer and stem cells during co-culture on various coated surfaces. Our findings support the evidence that cancer and stem cell interactions play important roles in cellular behavior of cancer cells. These properties can be used in different fields of cancer research, tissue engineering and biotechnology.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Modelos Biológicos , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Fluorescência , Humanos
4.
Curr Neurovasc Res ; 7(1): 49-58, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20158462

RESUMO

The use of mesenchymal stem cells (MSCs) has been shown to be promising in chronic disorders such as diabetes, Alzheimer's dementia, Parkinson's disease, spinal cord injury and brain ischemia. Recent studies revealed that human tooth germs (hTG) contain MSCs which can be easily isolated, expanded and cryo-preserved. In this report, we isolated human tooth germ stem cells (hTGSCs) with MSC characteristics from third molar tooth germs, cryo-preserved them at -80( degrees )C for 6 months, and evaluated for their surface antigens, expression of pluri-potency associated genes, differentiation capacity, karyotype, and proliferation rate. These characteristics were compared to their non-frozen counterparts. In addition, neuro-protective effects of cryo-preserved cells on neuro-blastoma SH-SY5Y cells were also assessed after exposure to stress conditions induced by hydrogen-peroxide (oxidative stress) and paclitaxel (microtubule stabilizing mitotic inhibitor). After long term cryo-preservation hTGSCs expressed surface antigens CD29, CD73, CD90, CD105, and CD166, but not CD34, CD45 or CD133, which was typical for non-frozen hTGSCs. Cryo-preserved hTGSCs were able to differentiate into osteo-, adipo- and neuro-genic cells. They also showed normal karyotype after high number of population doublings and unchanged proliferation rate. On the other hand, cryo-preserved cells demonstrated a tendency for lower level of pluri-potency associated gene expression (nanog, oct4, sox2, klf4, c-myc) than non-frozen hTGSCs. hTGSCs conditioned media increased survival of SH-SY5Y cells exposed to oxidative stress or paclitaxel. These findings confirm that hTGSCs preserve their major characteristics and exert neuro-protection after long-term cryo-preservation, suggesting that hTGSCs, harvested from young individuals and stored for possible use later as they grow old, might be employed in cellular therapy of age-related degenerative disorders.


Assuntos
Criopreservação , Células-Tronco Mesenquimais/fisiologia , Germe de Dente/citologia , Anexina A5/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Caspase 3/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Criança , Criopreservação/métodos , Meios de Cultivo Condicionados/farmacologia , Análise Citogenética/métodos , Interações Medicamentosas , Feminino , Citometria de Fluxo/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Fator 4 Semelhante a Kruppel , Células-Tronco Mesenquimais/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Paclitaxel/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa