Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.055
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(6): 974-993.e15, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931259

RESUMO

14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.


Assuntos
Proteínas 14-3-3 , Proteínas de Choque Térmico HSP90 , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica
2.
Mol Cell ; 82(17): 3135-3150.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914531

RESUMO

Alternative polyadenylation (APA) enhances gene regulatory potential by increasing the diversity of mRNA transcripts. 3' UTR shortening through APA correlates with enhanced cellular proliferation and is a widespread phenomenon in tumor cells. Here, we show that the ubiquitously expressed transcription factor Sp1 binds RNA in vivo and is a common repressor of distal poly(A) site usage. RNA sequencing identified 2,344 genes (36% of the total mapped mRNA transcripts) with lengthened 3' UTRs upon Sp1 depletion. Sp1 preferentially binds the 3' UTRs of such lengthened transcripts and inhibits cleavage at distal sites by interacting with the subunits of the core cleavage and polyadenylation (CPA) machinery. The 3' UTR lengths of Sp1 target genes in breast cancer patient RNA-seq data correlate with Sp1 expression levels, implicating Sp1-mediated APA regulation in modulating tumorigenic properties. Taken together, our findings provide insights into the mechanism for dynamic APA regulation by unraveling a previously unknown function of the DNA-binding transcription factor Sp1.


Assuntos
Poli A , Poliadenilação , Regiões 3' não Traduzidas , Humanos , Poli A/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Zinco/metabolismo
3.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35914530

RESUMO

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Assuntos
Neurogênese , Splicing de RNA , Processamento Alternativo , Animais , Éxons/genética , Mamíferos , Camundongos , Neurogênese/genética , Neurônios , Proteínas de Ligação a RNA/genética
4.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587191

RESUMO

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Assuntos
Sistemas CRISPR-Cas , Genes Reporter , Precursores de RNA , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Genoma Humano , Células HEK293 , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Poliadenilação , Clivagem do RNA , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética
5.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722058

RESUMO

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias , Humanos , Carnitina O-Palmitoiltransferase/genética , Citotoxicidade Imunológica , Ácidos Graxos , Metabolismo dos Lipídeos , Neoplasias/terapia , Linfócitos T Citotóxicos
6.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157508

RESUMO

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Assuntos
Processamento Alternativo , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/genética
7.
Small ; 20(22): e2306665, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150613

RESUMO

Developing efficient, lightweight, and durable all-solid-state supercapacitors is crucial for future energy storage systems. The study focuses on optimizing electrode materials to achieve high capacitance and stability. This study introduces a novel two-step pyrolysis process to synthesize activated carbon nanosheets from jute sticks (JAC), resulting in an optimized JAC-2 material with a high yield (≈24%) and specific surface area (≈2600 m2 g-1). Furthermore, an innovative in situ synthesis approach is employed to synthesize hybrid nanocomposites (NiCoLDH-1@JAC-2) by integrating JAC nanosheets with nickel-cobalt-layered double hydroxide nanoflowers (NiCoLDH). These nanocomposites serve as positive electrode materials and JAC-2 as the negative electrode material in all-solid-state asymmetric hybrid supercapacitors (HSCs), exhibiting remarkable performance metrics. The HSCs achieve a specific capacitance of 750 F g-1, a specific capacity of 209 mAh g-1 (at 0.5 A g-1), and an energy density of 100 Wh kg-1 (at 250 W kg-1) using PVA/KOH solid electrolyte, while maintaining outstanding cyclic stability. Importantly, a density functional theory framework is utilized to validate the experimental findings, underscoring the potential of this novel approach for enhancing HSC performance and enabling the large-scale production of transition metal-based layered double hydroxides.

8.
Opt Express ; 32(3): 3835-3851, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297596

RESUMO

High-level detection of weak targets under bright light has always been an important yet challenging task. In this paper, a method of effectively fusing intensity and polarization information has been proposed to tackle this issue. Specifically, an attention-guided dual-discriminator generative adversarial network (GAN) has been designed for image fusion of these two sources, in which the fusion results can maintain rich background information in intensity images while significantly completing target information from polarization images. The framework consists of a generator and two discriminators, which retain the texture and salient information as much as possible from the source images. Furthermore, attention mechanism is introduced to focus on contextual semantic information and enhance long-term dependency. For preserving salient information, a suitable loss function has been introduced to constrain the pixel-level distribution between the result and the original image. Moreover, the real scene dataset of weak targets under bright light has been built and the effects of fusion between polarization and intensity information on different weak targets have been investigated and discussed. The results demonstrate that the proposed method outperforms other methods both in subjective evaluations and objective indexes, which prove the effectiveness of achieving accurate detection of weak targets in bright light background.

9.
Acta Neuropathol ; 147(1): 17, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231266

RESUMO

Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Humanos , Príons/genética , Doenças Priônicas/diagnóstico , Doenças Priônicas/genética , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Biomarcadores
10.
Osteoporos Int ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900165

RESUMO

Our study investigates vertebral fractures in individuals with distal radius fractures. Among 512 patients, 41.21% had vertebral fractures, predominantly in the lumbar spine. These findings highlight the importance of screening for vertebral fractures in this population, informing early intervention strategies to mitigate risks associated with osteoporosis. PURPOSE: This study's main goal was to look into the frequency, location, kind, and severity of asymptomatic vertebral fragility fractures (VFF) in people who had fractures of the fragility of the distal radius. Although VFF is frequently misdiagnosed, it is linked to higher mortality, morbidity, and hip fracture risk. The study also attempted to investigate the relationship between VFF and certain demographic and lifestyle factors, as well as FRAX data, in this patient population. METHODS: Between January, 2021, and January, 2022, individuals with low-energy distal radial fractures who presented to the emergency room of tertiary care hospital of Karachi, Pakistan, were the subject of a cross-sectional study and were 45 years of age or older except those who fitted the exclusion criteria (n = 208). The thoracic and/or lumbar spine was imaged using radiology, and information on demographics, way of life, and FRAX (Fracture Risk Assessment Tool) was gathered. Using the Genant semiquantitative approach, an impartial and blinded orthopaedist identified VF in the images and determined their severity. SPSS version 20 was used to analyse the data. RESULTS: Two hundred eleven (41.21%) of them were found to have radiographic VFF and only 12 (2.34%) of the 512 patients who were tested were getting osteoporotic therapy. The thoracic spine (32.7%), followed by the lumbar spine (43.12%), was the area most frequently afflicted. In 24.17% of the patients, multiple fractures of the thoracolumbar spine were found. The wedge form (54.5%), followed by biconcave (30.81%) and crush (14.7%), was the most prevalent VFF type. The majority of detected VFF were rated as having a 25-40% height loss (64.9%) then severe (> 40%) fractures (35.1%), according to the Genant grading method. Notably, there were no variations in smoking, drinking, BMI, or FRAX score between patients with and without VFF that were statistically significant. CONCLUSION: Based on our study's findings, it is clear that osteoporotic vertebral fragility fractures occur in almost half of individuals with distal radius fractures. The lumbar spine is notably the most affected region, predominantly with wedge fractures. Given the high prevalence of asymptomatic vertebral fragility fractures (VFF), proactive measures are necessary to mitigate associated risks. Prioritising comprehensive fall risk assessments for these patients and interventions to enhance bone mineral density and strength are crucial. Early identification of asymptomatic VFF enables timely intervention, optimising patient care and minimising the risk of complications in this vulnerable population.

11.
Opt Lett ; 49(7): 1680-1683, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560835

RESUMO

With the help of a theoretical model and finite-difference time-domain (FDTD) simulations based on the hydrodynamic-Maxwell model, we examine the effect of difference-frequency generation (DFG) in an array of L-shaped metal nanoparticles (MNPs) characterized by intrinsic plasmonic nonlinearity. The outcomes of the calculations reveal the spectral interplay between gain and loss in the vicinity of the fundamental frequency of the localized surface plasmon resonances. Subsequently, we identify different array thicknesses and pumping regimes facilitating parametric amplification and spontaneous parametric downconversion. Our results suggest that the parametric amplification regime becomes feasible on a scale of hundreds of nanometers and spontaneous parametric downconversion on the scale of tens of nanometers, opening up new exciting opportunities for developing building blocks of photonic metasurfaces.

12.
Chem Rec ; 24(1): e202300005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36807755

RESUMO

Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg-1 ), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.

13.
Chem Rec ; 24(1): e202200310, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36861955

RESUMO

Aqueous Zn-ion battery systems (AZIBs) have emerged as the most dependable solution, as demonstrated by successful systematic growth over the past few years. Cost effectivity, high performance and power density with prolonged life cycle are some major reason of the recent progress in AZIBs. Development of vanadium-based cathodic materials for AZIBs has appeared widely. This review contains a brief display of the basic facts and history of AZIBs. An insight section on zinc storage mechanism ramifications is given. A detailed discussion is conducted on features of high-performance and long life-time cathodes. Such features include design, modifications, electrochemical and cyclic performance, along with stability and zinc storage pathway of vanadium based cathodes from 2018 to 2022. Finally, this review outlines obstacles and opportunities with encouragement for gathering a strong conviction for future advancement in vanadium-based cathodes for AZIBs.

14.
Chem Rec ; 24(1): e202300216, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37651034

RESUMO

In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.

15.
Chem Rec ; 24(1): e202300017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37010435

RESUMO

Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.

16.
Chem Rec ; 24(1): e202300239, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050957

RESUMO

Metal negatrode supercapattery (MNSC) is an emerging technology that combines the high energy storage capabilities of batteries with the high-power delivery of supercapacitors, thereby offering promising solutions for various applications, such as energy storage systems, electric vehicles, and portable electronics. This review article presents a comprehensive analysis of the potential of MNSCs as a prospective energy storage technology. MNSCs utilize a specific configuration in which the negatrode consists of a metal or metal-rich electrode, such as sodium, aluminum, potassium, or zinc, whereas the positrode functions as a supercapacitor electrode. The utilization of negatrodes with low electrochemical potential and high electrical conductivity is crucial for achieving high specific energy in energy storage devices, despite facing numerous challenges. The present study discusses the design and fabrication aspects of MNSCs, including the selection of appropriate metal negatrodes, electrolytes, and positrodes, alongside the fundamental operational mechanisms. Additionally, this review explores the challenges encountered in MNSCs and proposes solutions to enhance their performance, such as addressing dendrite formation and instability of metal electrodes.

17.
Chem Rec ; 24(1): e202300105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37222655

RESUMO

Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.

18.
Chem Rec ; 24(1): e202300302, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010947

RESUMO

As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.

19.
Chem Rec ; 24(1): e202300155, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435960

RESUMO

In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.

20.
Chem Rec ; 24(1): e202300161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37582638

RESUMO

Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g-1 , signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g-1 , highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa