Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001200

RESUMO

Acute lymphoblastic leukemia, commonly referred to as ALL, is a type of cancer that can affect both the blood and the bone marrow. The process of diagnosis is a difficult one since it often calls for specialist testing, such as blood tests, bone marrow aspiration, and biopsy, all of which are highly time-consuming and expensive. It is essential to obtain an early diagnosis of ALL in order to start therapy in a timely and suitable manner. In recent medical diagnostics, substantial progress has been achieved through the integration of artificial intelligence (AI) and Internet of Things (IoT) devices. Our proposal introduces a new AI-based Internet of Medical Things (IoMT) framework designed to automatically identify leukemia from peripheral blood smear (PBS) images. In this study, we present a novel deep learning-based fusion model to detect ALL types of leukemia. The system seamlessly delivers the diagnostic reports to the centralized database, inclusive of patient-specific devices. After collecting blood samples from the hospital, the PBS images are transmitted to the cloud server through a WiFi-enabled microscopic device. In the cloud server, a new fusion model that is capable of classifying ALL from PBS images is configured. The fusion model is trained using a dataset including 6512 original and segmented images from 89 individuals. Two input channels are used for the purpose of feature extraction in the fusion model. These channels include both the original and the segmented images. VGG16 is responsible for extracting features from the original images, whereas DenseNet-121 is responsible for extracting features from the segmented images. The two output features are merged together, and dense layers are used for the categorization of leukemia. The fusion model that has been suggested obtains an accuracy of 99.89%, a precision of 99.80%, and a recall of 99.72%, which places it in an excellent position for the categorization of leukemia. The proposed model outperformed several state-of-the-art Convolutional Neural Network (CNN) models in terms of performance. Consequently, this proposed model has the potential to save lives and effort. For a more comprehensive simulation of the entire methodology, a web application (Beta Version) has been developed in this study. This application is designed to determine the presence or absence of leukemia in individuals. The findings of this study hold significant potential for application in biomedical research, particularly in enhancing the accuracy of computer-aided leukemia detection.


Assuntos
Aprendizado Profundo , Internet das Coisas , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Inteligência Artificial , Leucemia/diagnóstico , Leucemia/classificação , Leucemia/patologia , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
2.
Environ Res ; 192: 110294, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022215

RESUMO

The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 µm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.


Assuntos
Antivirais , Betacoronavirus , COVID-19 , Coronavirus , Pneumonia Viral , Antivirais/uso terapêutico , Glycyrrhiza , Humanos , Máscaras , Nanofibras , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2
3.
Environ Monit Assess ; 191(2): 98, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30675638

RESUMO

Land use and land cover (LULC) change have considerable influence on ecosystem services. Assessing change in ecosystem services due to LULC change at different spatial and temporal scales will help to identify suitable management practices for sustaining ecosystem productivity and maintaining the ecological balance. The objective of this study was to investigate variations in ecosystem services in response to LULC change over 27 years in four agro-climatic zones (ACZ) of eastern India using satellite imagery for the year 1989, 1996, 2005, 2011 (Landsat TM) and 2016 (Landsat 8 OLI). The satellite images were classified into six LULC classes, agriculture land, forest, waterbody, wasteland, built-up, and mining area. During the study period (1989 to 2016), forest cover reduced by 5.2%, 13.7%, and 3.6% in Sambalpur, Keonjhar, and Kandhamal districts of Odisha, respectively. In Balasore, agricultural land reduced by 17.2% due to its conversion to built-up land. The value of ecosystem services per unit area followed the order of waterbodies > agricultural land > forests. A different set of indicators, e.g., by explicitly including diversity, could change the rank between these land uses, so the temporal trends within a land use are more important than the absolute values. Total ecosystem services increased by US$ 1296.4 × 105 (50.74%), US$ 1100.7 × 105 (98.52%), US$ 1867 × 105 (61.64%), and US$ 1242.6 × 105 (46.13%) for Sambalpur, Balasore, Kandhamal, and Keonjhar, respectively.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Agricultura/métodos , Ecossistema , Florestas , Índia , Mineração , Imagens de Satélites/métodos
4.
Poult Sci ; 103(11): 104155, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216265

RESUMO

The exposure of broiler chickens to high ambient temperatures causes heat stress (HS), negatively affecting their health and production performance. To mitigate heat stress in broilers, various strategies, including dietary, managerial, and genetic interventions, have been extensively tested with varying degrees of efficacy. For sustainable broiler production, it is imperative to develop an innovative approach that effectively mitigates the adverse effects of HS. Our previous studies have provided valuable insights into the effects of prehatch embryonic thermal manipulation (TM) and posthatch baicalein supplementation on embryonic thermotolerance, metabolism, and posthatch growth performance. This follow-up study investigated the effect of these interventions on gluconeogenesis and lipid metabolism in the liver, as well as muscle proliferation and regeneration capacity in heat-stressed broiler chickens. A total of six-hundred fertile Cobb 500 eggs were incubated for 21 d. After candling, 238 eggs were subjected to TM at 38.5°C with 55% relative humidity (RH) from embryonic day (ED) 12 to 18. These eggs were transferred to the hatcher and kept at a standard temperature (37.5°C) from ED 19 to 21, while 236 eggs were incubated at a controlled temperature (37.5°C) till hatch. After hatching, 180 day-old chicks from both groups were raised in 36 pens treatment (n = 10 birds/pen, 6 replicates per treatment). The treatments were: 1) Control, 2) TM, 3) Control heat stress (CHS), 4) Thermal manipulation heat stress (TMHS), 5) Control heat stress supplement (CHSS), and 6) Thermal manipulation heat stress supplement (TMHSS). Baicalein was added to the treatment group diets starting from d 1. All birds were raised under the standard environment for 21 d, followed by chronic heat stress from d 22 to 35 (32-33 °C for 8 h) in the CHS, TMHS, CHSS, and TMHSS groups. A thermoneutral (22-24°C) environment was maintained in the Control and TM groups. RH was constant (50 ± 5%) throughout the trial. In the liver, TM significantly increased (P < 0.05) IGF2 expression. Baicalein supplementation significantly increased (P < 0.05) HSF3, HSP70, SOD1, SOD2, TXN, PRARα, and GHR expression. Moreover, the combination of TM and baicalein supplementation significantly increased (P < 0.05) the expression of HSPH1, HSPB1, HSP90, LPL, and GHR. In the muscle, TM significantly increased (P < 0.05) HSF3 and Myf5 gene expression. TM and baicalein supplementation significantly increased (P < 0.05) the expression of MyoG and significantly (P < 0.05) decreased mTOR and PAX7. In conclusion, the prehatch TM of embryos and posthatch baicalein supplementation mitigated the deleterious effects of HS on broiler chickens by upregulating genes related to liver gluconeogenesis, lipid metabolism, and muscle proliferation.


Assuntos
Galinhas , Suplementos Nutricionais , Flavanonas , Fígado , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/fisiologia , Embrião de Galinha , Suplementos Nutricionais/análise , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Dieta/veterinária , Temperatura Alta , Ração Animal/análise , Resposta ao Choque Térmico/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos
5.
Health Sci Rep ; 7(4): e2039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617042

RESUMO

Background and Aims: Antibiotic resistance presents a significant global public health challenge, particularly for urinary tract infections (UTIs), and is notably severe in developing countries. Surveillance of the antimicrobial susceptibility patterns of UTI-causing bacteria is crucial for effective treatment selection. This study aimed to analyze these patterns in bacteria isolated from the urine samples of patients at Mughda Medical College Hospital, Dhaka, Bangladesh. Methods: A retrospective study (January 2019 to December 2020) at Mugdha Medical College and Hospital, Dhaka, examined clinical and laboratory data from patients with positive urine cultures (≥105 CFU/mL). The study classified patients into four age groups: children (1-<18 years), young adults (18-<33 years), middle-aged adults (33-50 years), and old adults (>50 years). The standard Kirby-Bauer method was used to assess antibiotic sensitivity to 28 common antibiotics. Results: Among 243 positive urine cultures in both community- and hospital-acquired UTIs, Escherichia coli was the most common uropathogen (65.84%), followed by Klebsiella spp. (12.34%), Enterococcus spp. (8.23%), and other types of bacteria. Conclusion: Old adults are particularly vulnerable to UTIs, with E. coli being the predominant causative agent in the study region. The observed antimicrobial resistance patterns underscore the necessity of judicious antibiotic selection to effectively treat UTIs across different age groups.

6.
Poult Sci ; 103(4): 103527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412748

RESUMO

The broilers' health and growth performance are affected by egg quality, incubation conditions, and posthatch management. Broilers are more susceptible to heat stress because they have poor thermoregulatory capacity. So, it is crucial to develop a strategy to make chicks thermotolerant and cope with heat stress in post-hatch life. This study investigated the effects of embryonic thermal manipulation (TM) on different hatching parameters (hatch time, hatchability, and hatch weight), brain thermotolerance, and liver metabolism. Six hundred fertile Cobb 500 eggs were incubated for 21 d. After candling on embryonic day (ED) 10, 238 eggs were thermally manipulated at 38.5°C with 55% relative humidity (RH) from ED 12 to 18, then transferred to the hatcher (ED 19-21, standard temperature, 37.5°C) and 236 eggs were incubated at a standard temperature (37.5°C) till hatch. The samples were collected from the Control and TM groups on ED 15 and 18 of the embryonic periods. Hatchability was significantly higher (P < 0.05) in the TM group (94.50%) than in the control group (91.0%). Hatch weight did not differ significantly between the TM group (50.54 g) and the Control group (50.39 g). Most importantly, hatch time was significantly lower (P < 0.05) in the TM group than in the Control. In the D15 embryo brain, the mRNA expression of TRPV1,TRPV2, TRPV3, and the epigenetic marker H3K27 were significantly lower (P < 0.05) in the TM group compared to the Control group. However, in the D18 brain, the expression of TRPV1, TRPV2, and CRHR1 was significantly higher (P < 0.05) in the TM group than in the Control group. In the liver, the mRNA expression of SLC6A14 was significantly lower (P < 0.05) in the D15 TM group than in the D15 Control group. Conversely, the DIO3 mRNA expression was significantly higher (P < 0.05) in the D15 TM group than in the D15 Control group. The expression of GPX3, FOXO1, IGF2, and GHR in the liver was significantly higher in the D18 TM group compared to the D18 Control group (P < 0.05). In conclusion, increased expression of the aforementioned markers during the later embryonic period has been linked to reduced hatch time by increasing liver metabolism and thermotolerance capacity in the brain.


Assuntos
Galinhas , Termotolerância , Animais , Óvulo/metabolismo , RNA Mensageiro/genética , Fígado/metabolismo
7.
Discov Nano ; 19(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168725

RESUMO

Polypropylene (PP) is a versatile polymer with numerous applications that has undergone substantial changes in recent years, focusing on the demand for next-generation polymers. This article provides a comprehensive review of recent research in PP and its advanced functional applications. The chronological development and fundamentals of PP are mentioned. Notably, the incorporation of nanomaterial like graphene, MXene, nano-clay, borophane, silver nanoparticles, etc., with PP for advanced applications has been tabulated with their key features and challenges. The article also conducts a detailed analysis of advancements and research gaps within three key forms of PP: fiber, membrane, and matrix. The versatile applications of PP across sectors like biomedical, automotive, aerospace, and air/water filtration are highlighted. However, challenges such as limited UV resistance, bonding issues, and flammability are noted. The study emphasizes the promising potential of PP while addressing unresolved concerns, with the goal of guiding future research and promoting innovation in polymer applications.

8.
J Biomater Sci Polym Ed ; 34(9): 1217-1236, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36576335

RESUMO

Nanofibrous scaffolds with core-shell structures can deliver bioactive agents, augment mechanical properties, provide a high surface area to volume ratio, and most importantly mimic the structure of extracellular matrix (ECM) which enables to maintain of a moist environment, elimination of excess exudates and provide antibacterial properties to impede infections. This study has developed PVA, licorice, and collagen (PLC) based hybrid bio-nano scaffold by co-axial electrospinning technique for enhancing wound closure. The core layer was made by PVA & licorice extract and shell layer was created by collagen & licorice extract solution. The morphology, moisture management properties, presence of constituent polymer, thermal behavior, and mechanical properties of the developed samples were characterized by FE-SEM, moisture management tester (MMT), FT/IR, TGA, tensile testing machine. Furthermore, in vitro antibacterial assay was conducted by Kirby-Bauer disk diffusion method for investigating antibacterial properties and an in-vivo wound healing assessment was employed by observing the wound healing. Then FE-SEM images showed the lowest and highest average diameters 119 nm and 154 nm respectively, FT/IR spectra ensured the presence of all materials in the sample. Furthermore, the moisture management test result demonstrated slow absorbing and slow drying scaffolds which emphasized the eligibility of the sample to be an ideal candidate for wound healing. Moreover, the minimum and maximum zones of inhibition (ZOI) were found 7 mm and 8 mm against the bacteria Staphylococcus aureus. Finally, an in vivo wound healing assessment revealed a better healing performance of the developed samples after 10 days.


Assuntos
Quitosana , Glycyrrhiza , Nanofibras , Quitosana/química , Cicatrização , Colágeno , Antibacterianos/farmacologia , Antibacterianos/química , Nanofibras/química , Álcool de Polivinil/química
9.
Heliyon ; 9(6): e16412, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37251461

RESUMO

Over the last few decades, phase change materials (PCM) have attracted a great deal of interest in medical textiles due to its superior thermoregulation system, simple application, and so on. Patients, however, confined to bed in a medical facility face the serious risk of developing bed sores, which is not mitigated by the use of a standard bed sheet. Numerous articles and patents have been studied related to development of thermal bed sheets using PCM applied by various techniques; however, no such initiates was found to prepare and characterize of hospital bed sheets using microencapsulated phase change material (MPCM) through screen printing method. Thus, this study aims to develop a hospital bed sheet constructed from cotton fabric incorporated with MPCM. To accomplish this, MPCM was mixed into the printing paste that had been applied on the fabric by screen printing method, and then dried at room temperature. Thermal behavior, thermal transition, and thermal conductivity of the developed samples had been investigated. Moisture management properties, mechanical properties, and bonding behavior of the samples were also examined. Scanning electron microscope (SEM) was used to analyze the sample's morphology, and a differential scanning calorimeter (DSC) was used to determine how polymeric materials behaved when heated. Thermogravimetric analysis (TGA) demonstrated that the MPCM incorporated sample lost weight slowly, while the DSC test confirmed that melting began at 20 °C and ended at 30 °C. Furthermore, fabricated sample had higher heat conductivity (0.1760822 w.m-1 k-1). Overall, the results revealed a great potential for using the developed samples as hospital bed sheets to prevent patients from developing bed sores.

10.
J Biomater Sci Polym Ed ; 34(11): 1517-1538, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36779683

RESUMO

The sophisticated new tissue regeneration focused on nanocomposite with different morphologies achieved through advanced manufacturing technology with the inclusion of bio-inscribed materials has piqued the research community's interest. This research aims at developing hybrid bio-nanocomposites with collagen (Col), Nigella sativa (Ns) oil and chitosan (Cs) by a bi-layered green electrospinning on polyvinyl chloride (PVA) layer in a different ratio for tissue regeneration. Fiber morphologies through scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), moisture management, tensile test, antibacterial activity, cell cytotoxicity and wound healing through rabbit model of the fabricated hybrid bio-nanocomposites were investigated. It is worth noting that water-soluble Col (above 60% solution) does not form Taylor cones during electrospinning because unable to overcome the surface tension of the solution (viscosity) to form fibers. The results show that water soluble Col (50% solution) to Cs (25% solution) and Ns (25% solution) has good fiber formation with mean diameter 384 ± 27 nm and degree of porosity is 79%. The fast-absorbing and slow-drying hybrid bio-nanocomposites maintain a moist environment for wounds and allowing gaseous exchange for cell migration and proliferation by the synergistic effects of bio-polymers. All of the biopolymers in bio-nanocomposite improve the H-bonds, which accounts for enough tensile strength to withstand cell pulling force. The antibacterial ZOI concentrations against S. aureus and E. coli were 10 and 8 mm, respectively, which appeared to be sufficient to inhibit bacterial action with 100% cell viability (cytotoxicity). The synergistic effects of Ns and Cs improve tissue regeneration, while native Col improves antibacterial activity, and the rabbit model achieves approximately 84% wound closure in only 10 days, which is 1.5 times faster than the control model. So, the fabricated hybrid bio-composites may be useful for skin tissue engineering.


Fabrication of bio-inscribed (green) electrospun hybrid bio-nanocomposite by the novel bi-layer techniqueThe developed complex (fast absorbing and slow drying composite) absorbs exudate from the wound to provide a suitable moist environment for healing and tissue regenerationAntibacterial susceptibility is boosted by the synergistic effects of Nigella sativa and chitosan, while tissue regeneration is improved (approx. 10 days for rabbit model) by native collagen with no cytotoxicityWater soluble collagen (above 60% solution) will not produce fibers as unable to surmount the surface tension of the solution (viscosity) and increasing amount of Nigella sativa decrease the inhibition zone against gram-negative bacteria [Figure: see text].


Assuntos
Quitosana , Nanocompostos , Nigella sativa , Animais , Coelhos , Quitosana/química , Engenharia Tecidual/métodos , Staphylococcus aureus , Escherichia coli , Colágeno/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química , Materiais Dentários , Água
11.
Chem Biomed Imaging ; 1(5): 403-413, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37655169

RESUMO

Multidimensional single-molecule localization microscopy (mSMLM) represents a paradigm shift in the realm of super-resolution microscopy techniques. It affords the simultaneous detection of single-molecule spatial locations at the nanoscale and functional information by interrogating the emission properties of switchable fluorophores. The latter is finely tuned to report its local environment through carefully manipulated laser illumination and single-molecule detection strategies. This Perspective highlights recent strides in mSMLM with a focus on fluorophore designs and their integration into mSMLM imaging systems. Particular interests are the accomplishments in simultaneous multiplexed super-resolution imaging, nanoscale polarity and hydrophobicity mapping, and single-molecule orientational imaging. Challenges and prospects in mSMLM are also discussed, which include the development of more vibrant and functional fluorescent probes, the optimization of optical implementation to judiciously utilize the photon budget, and the advancement of imaging analysis and machine learning techniques.

12.
Saudi J Biol Sci ; 30(10): 103786, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37771370

RESUMO

Companion animals serve as our best friends, confidants, and family members. Thus, disease and antibiotic resistance gene transmission in pets and humans must be sought out. The study aimed to identify the common pathogenic Escherichia coli (E.coli) in pet cats and the antibiotic resistance patterns and resistant gene distribution. Samples (n = 210) were collected from different veterinary clinics in Bangladesh's cities of Mymensingh and Dhaka. Pathogenic E. coli was identified using conventional and molecular approaches. The disc diffusion method assessed the resistance profile against 12 antibiotics, and PCR was used to identify the beta-lactam resistance genes. The prevalence of the stx-1 gene was found to be 2.86%, whereas the rfbO157 prevalence was found to be 1.90% in cats. The stx-1 gene (n = 6) was 100% resistant to erythromycin and imipenem, whereas 100% sensitive to chloramphenicol. In turn, the rfbO157 gene (n = 4) exhibited 100% resistance to erythromycin, imipenem, cefixime, and azithromycin. In addtion, we identified genes that exhibit resistance to beta-lactam antibiotics (100% blaTEM, 40% blaCTX-M, 40% blaSHV2). This study found shiga-toxin producing and extended-spectrum beta-lactamase (ESBL) producing E. coli for the first time in pet cats of Bangladesh. Furthermore, the antimicrobial resistance (AMR) profile of the isolated strains refers to the occurrence of multidrug, which concerns cats and their owners. The existence of these genes in non-diarrheic pet animal isolates indicates that domestic pets may serve as a reservoir for human infection. Thus, one health strategy comprising animal and human health sectors, governments, together with stakeholders is needed to confront multidrug-resistant E. coli infections in Bangladesh.

13.
ACS Omega ; 8(48): 45164-45176, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075799

RESUMO

Phase change materials (PCMs) are an extraordinary family of compounds that can store and release thermal energy during phase changes. In recent years, the incorporation of PCMs into textiles has attracted considerable interest, since it represents a unique way to improve the comfort and usefulness of textiles. This article examines the advancements achieved in the preparation, classifications, and environmental effects of PCM-integrated textiles, along with a roadmap for the future. Progress of different PCM has been reported including its pros and cons. In addition, fabrications of the PCM on the apparel have been highlighted. Moreover, this Review analyzed the positive environmental impact of PCM-integrated textiles including improved insulation, extended product lifespan, and energy savings along with negative effects like higher energy consumption in the manufacturing process, added chemical additives tending to have a negative impact on the environment, less disposal features textiles and many more with recent references. Moreover, the future outlook also reports more research on nanoencapsulation, making it energy efficient, ensuring affordability, and more applications in smart PCM textiles. It seeks to stimulate additional research, encourage innovation, and contribute to the creation of high-performance, energy-efficient textiles by investigating the possibilities of PCM-enhanced textiles. The future of PCM in textiles is hopeful, with continuous research and technological advances resolving the aforementioned difficulties.

14.
J Infect Public Health ; 16 Suppl 1: 141-152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953112

RESUMO

Anthrax is more prevalent in impoverished nations and those without veterinarian public health initiatives. A comprehensive strategy was pursued to build an anthrax-free model in which there would be no anthrax. The strategy included routine vaccination, increased public awareness, rapid confirmation, and prompt disposal, as well as the establishment of an effective surveillance system, the development of an emergency prevention system, the enforcement of regulations, and the improvement of collaboration between human health and veterinary services. From 2017 through 2020, several initiatives including both social and laboratory activities were performed. After strictly applying the study's procedures, it was determined that the vast majority of community people (97.5%) were knowledgeable of the disease's nature, prevalence, significance to public health, and treatment in the study area. The farmers' risky practices and attitudes about the killing of sick livestock decreased dramatically (85%). The vaccination rate climbed from 40% to 85%, and the proportion of farmers who can presumptively identify anthrax based on its prominent clinical symptoms rose from 30% to 85%. A confirmation methodology based on PCR was implemented. A geographical map depicting the green and dangerous pastureland was created. The formation of a steering group to assess the progress of scientific activity. Locals established a slaughterhouse in that location, where individuals slaughtered their animals following veterinary examination and strictly followed drug withdrawal period. The contaminated area has been free of anthrax infection for four years as a consequence of these efforts. There also reduction of antibiotic used due to mass awareness. The study indicated that the model is an efficient, effective, and appropriate technique for establishing an anthrax-free zone where no anthrax outbreaks would occur. It could be replicated in any part of the world where socioeconomic and geographical conditions are similar.


Assuntos
Antraz , Animais , Humanos , Antraz/epidemiologia , Antraz/prevenção & controle , Antraz/veterinária , Países em Desenvolvimento , Surtos de Doenças/prevenção & controle , Saúde Pública , Gado
15.
Heliyon ; 9(7): e17961, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483766

RESUMO

This present study involves the formation and investigation of the characteristics of a fabricated mat from a PVA-betel leaf mixture. Under ideal processing parameters, nanofibrous mat is synthesized from the PVA-betel leaf blended solution by using the electrospinning technique. Afterwards, the produced nanofibrous mat is assessed for its thermal, antibacterial, morphological, moisture management and chemical interaction behavior using thermogravimetric analysis (TGA), antibacterial assay, scanning electron microscope (SEM), moisture management tester (MMT) and Fourier-transform infrared spectroscopy (FTIR) respectively. The antibacterial action against Staphylococcus aureus and Escherichia coli bacteria has been assessed using the agar diffusion technique, which reveals the creation of zones of inhibition with a value of about 20 mm. Besides, the fabricated nanomat reveals an average diameter of 183.4 nm with improved moisture and thermal characteristics. Furthermore, the generated nanofibrous mat has all the necessary components, as evidenced by the distinctive peaks in the FTIR spectra. Hence, the recently developed nanofibrous mat exhibits promising potential as a suitable material for wound dressing applications.

16.
J Adv Vet Anim Res ; 10(3): 545-553, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37969791

RESUMO

Objective: This study sought to determine the occurrence, molecular identification, antimicrobial-resistant trends, and gene distribution of Staphylococcus aureus in pet cats and their owners' hand swabs. Materials and Methods: From different places and clinics in Mymensingh and Dhaka, 168 pet cat samples and 42 hand swab samples from cat owners were obtained. The organisms were scrutinized by assessing the outcomes using conventional and molecular techniques. The disc diffusion technique was applied to find the resistance pattern against 12 antibiotics, and genes were discovered by targeting specific genes using PCR. Results: The occurrence of pathogenic S. aureus in pet cats was 7.74%, while it was 9.50% in pet owners' hand swabs, and 25.0% of the pet owner's hand swabs contained these genes. Staphylococcus aureus was utterly resistant to amoxicillin, ampicillin, cefixime, erythromycin, and imipenem in both pet cat and hand swabs of pet owner samples. All S. aureus isolates had a multidrug-resistant phenotype, and 1 from pet cats (O19) and 1 from pet owner hand swabs (H9) were resistant to all 12 antibiotics in the 7 antimicrobial classes. Several antibiotic-resistance genes were detected by PCR. Conclusion: The study confirmed multidrug-resistant pathogenic S. aureus in pet cats and their owners in Bangladesh, indicating a major health risk to both people and cats. Thus, a holistic and integrated one-health approach between veterinary and medical specialists is needed to mitigate the global distribution of these zoonotic antibiotic-resistant S. aureus strains.

17.
J Appl Biomater Funct Mater ; 20: 22808000221136061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346022

RESUMO

The endeavor was to adopt a facile bi-layered approach to fabricate a novel PVA-chitosan-collagen-licorice nanofibrous mat (PCCLNM) with maintaining the spinning parameters and conditions to assess the synergistic antibacterial action of two biopolymers and having properties for repairing tissues. Bonding behavior, morphological orientation, antibacterial activity, and moisture management features of the electrospun nanofibrous mat were investigated using various characterization techniques. The FTIR analysis of the manufactured nanofibrous mat revealed characteristic peaks of licorice, chitosan, collagen, and PVA polymer, confirming the presence of all polymers in the sample. Additionally, a scanning electron microscopy (SEM) image attributes the development of nanofibers with an average diameter for top and bottom sides were 219 and 188 nm respectively. Furthermore, moisture management tests (MMT) confirm PCCLNM's slow absorption and drying capabilities. Apart from that, a disk diffusion method was used to investigate antibacterial activity against the bacteria Staphylococcus aureus (S. aureus), which revealed a strong presence of antibacterial activity with a 20 mm zone of inhibition due to the chemical constituents of licorice and chitosan compound. The developed bio-nanocomposite could have a potential application as wound healing material.


Assuntos
Quitosana , Nanofibras , Nanofibras/química , Quitosana/farmacologia , Quitosana/química , Staphylococcus aureus , Álcool de Polivinil/química , Antibacterianos/química , Extratos Vegetais
18.
Heliyon ; 8(9): e10603, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36158080

RESUMO

This paper presents the coating technology on Nano membrane using SiC-TiO2-Graphene with varying percentages of Azadirachta indica (Neem) extract with an objective to develop new coating materials. The nanomembranes have been synthesized by electrospinning machine over aluminum foil paper using the raw materials PVA grain, SiC, TiO2, Graphene, and neem. The nanomembranes have been characterized by SEM, XRD, FTIR, Surface Roughness, antibacterial, and Cytotoxicity test. FTIR analysis established the presence of PVA and neem indicating the formation of different organic compounds. It also confirmed that no chemical reaction occurred during the synthesis process. The membrane's roughness analysis obtained average roughness values from 1.15 to 3.84. The formation of homogeneous and smooth membranes with the formation of micropores was confirmed by SEM analysis. Miller Indices identified different types of crystal structures in XRD analysis. Antibacterial activity increased with the increase of the percentage of neem confirmed by the antibacterial test. No toxic effects were observed from the membrane during the cytotoxicity test. The obtained data confirmed that the synthesized nanomembrane could be used in different biomedical applications.

19.
Foods ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205202

RESUMO

Natural colorants have been used in several ways throughout human history, such as in food, dyes, pharmaceuticals, cosmetics, and many other products. The study aimed to isolate the natural colorant-producing filamentous fungi Aspergillus niger from soil and extract pigments for its potential use specially for food production. Fourteen soil samples were collected from Madhupur National Park at Madhupur Upazila in the Mymensingh district, Bangladesh. The Aspergillus niger was isolated and identified from the soil samples by following conventional mycological methods (cultural and morphological characteristics), followed by confirmatory identification by a polymerase chain reaction (PCR) of conserved sequences of ITS1 ribosomal DNA using specific oligonucleotide primers. This was followed by genus- and species-specific primers targeting Aspergillus niger with an amplicon size of 521 and 310 bp, respectively. For pigment production, a mass culture of Aspergillus niger was conducted in Sabouraud dextrose broth in shaking conditions for seven days. The biomass was subjected to extraction of the pigments following an ethanol-based extraction method and concentrated using a rotary evaporator. Aspergillus niger could be isolated from three samples. The yield of extracted brown pigment from Aspergillus niger was 0.75% (w/v). Spectroscopic analysis of the pigments was carried out using a UV-VIS spectrophotometer. An in vivo experiment was conducted with mice to assess the toxicity of the pigments. From the colorimetric and sensory evaluations, pigment-supplemented products (cookies and lemon juice) were found to be more acceptable than the control products. This could be the first attempt to use Aspergillus niger extracted pigment from soil samples in food products in Bangladesh, but for successful food production, the food colorants must be approved by a responsible authority, e.g., the FDA or the BSTI. Moreover, fungal pigments could be used in the emerging fields of the food and textile industries in Bangladesh.

20.
J Infect Public Health ; 13(11): 1619-1629, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32718895

RESUMO

The immune system protects against viruses and diseases and produces antibodies to kill pathogens. This review presents a brief overview of the immune system regarding its protection of the human body from COVID-19; illustrates the process of the immune system, how it works, and its mechanism to fight virus; and presents information on the most recent COVID-19 treatments and experimental data. Various types of potential challenges for the immunes system are also discussed. At the end of the article, foods to consume and avoid are suggested, and physical exercise is encouraged. This article can be used worldwide as a state of the art in this critical moment for promising alternative solutions related to surviving the coronavirus.


Assuntos
Infecções por Coronavirus/imunologia , Imunização Passiva , Pneumonia Viral/imunologia , Imunidade Adaptativa , Betacoronavirus , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Humanos , Imunidade Inata , Política Nutricional , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa