Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pept Sci ; 30(4): e3553, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031661

RESUMO

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys-His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein-peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 µM, respectively. A liquid chromatography-MS (LC-MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 µM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.


Assuntos
COVID-19 , Peptídeo Hidrolases , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Simulação de Dinâmica Molecular
2.
J Sep Sci ; 43(11): 2125-2132, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32073721

RESUMO

Methanol-chloroform based protein precipitation is an essential step in many liquid chromatography-tandem mass spectrometry-based cellular proteomics applications. However, re-solubilization of the total protein precipitate is difficult using regular in-solution digestion protocol. Sodium deoxycholate is reported as an efficient surfactant for re-solubilization of membrane fractions. In this study, we demonstrated an application combining methanol-chloroform based protein precipitations and deoxycholic acid assisted re-solubilization of pellets to evaluate the improvement of protein identifications in mass spectrometry-based bottom-up proteomics. We evaluated the modified method using an equal amount of Raw 264.7 mouse macrophage cell lysate. Detailed in-solution trypsin digestion studies were presented on methanol-chloroform precipitated samples with or without deoxycholic acid treatments and compared with popular sample digestion methods. A mass spectrometric analysis confirmed an 82% increase in protein identification in deoxycholic acid-treated samples compared to other established methods. Furthermore, liquid chromatography-tandem mass spectrometry analysis of an equal amount of proteins from methanol-chloroform precipitated, and methanol-chloroform/deoxycholic acid-treated macrophage cell lysate showed a 14% increase and 27% unique protein identifications. We believe this improved digestion method could be a complementary or alternative method for mammalian cell sample preparations where sodium dodecyl sulfate based lysis buffer is frequently used.


Assuntos
Clorofórmio/metabolismo , Metanol/metabolismo , Proteômica , Tripsina/análise , Tripsina/metabolismo , Animais , Bicarbonatos/química , Bicarbonatos/metabolismo , Clorofórmio/química , Cromatografia Líquida , Metanol/química , Camundongos , Células RAW 264.7 , Soluções , Espectrometria de Massas em Tandem
3.
Proteomes ; 10(3)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136309

RESUMO

Toll-like receptor 4 (TLR4) is a receptor on an immune cell that can recognize the invasion of bacteria through their attachment with bacterial lipopolysaccharides (LPS). Hence, LPS is a pro-immune response stimulus. On the other hand, statins are lipid-lowering drugs and can also lower immune cell responses. We used human embryonic kidney (HEK 293) cells engineered to express HA-tagged TLR-4 upon treatment with LPS, statin, and both statin and LPS to understand the effect of pro- and anti-inflammatory responses. We performed a monoclonal antibody (mAb) directed co-immunoprecipitation (CO-IP) of HA-tagged TLR4 and its interacting proteins in the HEK 293 extracted proteins. We utilized an ETD cleavable chemical cross-linker to capture weak and transient interactions with TLR4 protein. We tryptic digested immunoprecipitated and cross-linked proteins on beads, followed by liquid chromatography-mass spectrometry (LC-MS/MS) analysis of the peptides. Thus, we utilized the label-free quantitation technique to measure the relative expression of proteins between treated and untreated samples. We identified 712 proteins across treated and untreated samples and performed protein network analysis using Ingenuity Pathway Analysis (IPA) software to reveal their protein networks. After filtering and evaluating protein expression, we identified macrophage myristoylated alanine-rich C kinase substrate (MARCKSL1) and creatine kinase proteins as a potential part of the inflammatory networks of TLR4. The results assumed that MARCKSL1 and creatine kinase proteins might be associated with a statin-induced anti-inflammatory response due to possible interaction with the TLR4.

4.
Methods Mol Biol ; 2184: 61-75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32808218

RESUMO

Macrophages play a critical role in innate immunity through Toll-like receptor (TLR) signaling. Lipopolysaccharides (LPS) are a ligand of microbial origin that can trigger cell signaling in macrophages through TLRs and production of pro-inflammatory cytokines. Statin, a hypercholesterolemia drug, on the contrary, can reduce inflammatory cytokine production, and inflammation at large. Discovery-based quantitative proteomics is a useful method for unraveling complex protein networks and inter-protein interactions. Here, we describe protocols for studying the inflammatory proteomics network in RAW 264.7 cells (a model murine macrophage cell line) with the singular or sequential treatment of LPS and statin. We provide detailed protocols, including a quantitative proteomic analysis by mass spectrometry data, a protein network analysis by bioinformatics, and a validation of target through biochemical methods (e.g., immunocytochemistry, immunoblotting, gene silencing, and real-time PCR).


Assuntos
Macrófagos/metabolismo , Proteômica/métodos , Animais , Linhagem Celular , Citocinas/metabolismo , Imunidade Inata/fisiologia , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos/fisiologia , Camundongos , Células RAW 264.7 , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo
5.
J Am Soc Mass Spectrom ; 28(4): 704-707, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27785692

RESUMO

Farnesylation and geranylgeranylation are the two types of prenyl modification of proteins. Prenylated peptides are highly hydrophobic and their abundances in biological samples are low. In this report, we studied the oxidized prenylated peptides by electrospray ionization mass spectrometry and identified them by collision-induced dissociation (CID) and electron-transfer dissociation (ETD) tandem mass spectrometry. Modified prenyl peptides were generated utilizing strong and low strength oxidizing agents to selectively oxidize and epoxidize cysteine sulfur and prenyl side chain. We selected three peptides with prenyl motifs and synthesized their prenylated versions. The detailed characteristic fragmentations of oxidized and epoxidized farnesylated and geranylgeranylated peptides were studied side by side with two popular fragmentation techniques. CID and ETD mass spectrometry clearly distinguished the modified version of these peptides. ETD mass spectrometry provided sequence information of the highly labile modified prenyl peptides and showed different characteristic fragmentations compared with CID. A detailed fragmentation of modified geranylgeranylated peptides was compared by CID and ETD mass spectrometry for the first time. Graphical Abstract ᅟ.


Assuntos
Neopreno/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Compostos de Epóxi/química , Gases/química , Oxirredução , Prenilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa