Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
BMC Bioinformatics ; 24(1): 65, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829112

RESUMO

BACKGROUND: It seems that several members of intestinal gut microbiota like Streptococcus bovis, Bacteroides fragilis, Helicobacter pylori, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, Peptostreptococcus anaerobius may be considered as the causative agents of Colorectal Cancer (CRC). The present study used bioinformatics and immunoinformatics approaches to design a potential epitope-based multi-epitope vaccine to prevent CRC with optimal population coverage. METHODS: In this study, ten amino acid sequences of CRC-related pathogens were retrieved from the NCBI database. Three ABCpred, BCPREDS and LBtope online servers were considered for B cells prediction and the IEDB server for T cells (CD4+ and CD8+) prediction. Then, validation, allergenicity, toxicity and physicochemical analysis of all sequences were performed using web servers. A total of three linkers, AAY, GPGPG, and KK were used to bind CTL, HTL and BCL epitopes, respectively. In addition, the final construct was subjected to disulfide engineering, molecular docking, immune simulation and codon adaptation to design an effective vaccine production strategy. RESULTS: A total of 19 sequences of different lengths for linear B-cell epitopes, 19 and 18 sequences were considered as epitopes of CD4+ T and CD8+ cells, respectively. The predicted epitopes were joined by appropriate linkers because they play an important role in producing an extended conformation and protein folding. The final multi-epitope construct and Toll-like receptor 4 (TLR4) were evaluated by molecular docking, which revealed stable and strong binding interactions. Immunity simulation of the vaccine showed significantly high levels of immunoglobulins, helper T cells, cytotoxic T cells and INF-γ. CONCLUSION: Finally, the results showed that the designed multi-epitope vaccine could serve as an excellent prophylactic candidate against CRC-associated pathogens, but in vitro and animal studies are needed to justify our findings for its use as a possible preventive measure.


Assuntos
Neoplasias Colorretais , Epitopos de Linfócito T , Animais , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/química , Vacinas de Subunidades Antigênicas/química , Epitopos de Linfócito B , Biologia Computacional/métodos
2.
Environ Res ; 214(Pt 3): 113966, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952738

RESUMO

Alginate-grafted polyaniline (Alg-g-PANI) microparticles were synthesized through the grafting of aniline onto functionalized Alg followed by double crosslinking by glutaraldehyde and calcium chloride. The performance of the developed microparticles as adsorbent in simultaneous removal of malachite green (MG) and congo red (CR) dyes were examined by the batch method. Experimental parameters, including adsorbent amount, pH, initial dyes concentrations, and contact time were optimized. Langmuir and Freundlich adsorption models were employed to explore the equilibrium isotherm. As the Langmuir model results, the maximum adsorption capacities (Qm) of microparticles for the MG and CR dyes were obtained as 578.3 and 409.6 mgg-1, respectively. Adsorption kinetics for both dyes were well-fitted with the pseudo-second-order model that confirm the rate-limiting step might be the chemical adsorption. The adsorbent was regenerated via desorption process and was reusable five times without a substantial decrease in its adsorption efficacy in first three cycles. Adsorbent-dyes interactions were computationally evaluated using Gromacs package, and it was found that both MG and CR are able to interact strongly with the adsorbent. In accordance with experimental results, simulation data revealed that MG can be removed more efficiently than those of the CR. As the experimental results, we could conclude that the synthesized Alg-g-PANI microparticles can be used as a nature-inspired adsorbent for simultaneous removals of CR and MG dyes.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Ânions , Cátions , Vermelho Congo , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
3.
Bioorg Chem ; 106: 104355, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223200

RESUMO

In this study, we prepared a novel amino cellulose derivative (benzyl cellulose-g-poly [2-(N,N-Dimethylamino)ethyl methacrylate]) via a homogeneous ATRP method. The successful synthesis of the novel amino cellulose was confirmed by FT-IR and 1H NMR. This study addressed the different characteristics of the prepared polymer including the thermal stability, solubility, and X-ray diffraction pattern. The antibacterial activity of the synthesized cellulose derivative was investigated using the diffusion disk method against both gram-negative (Escherichia coli, Salmonella enterica) and gram-positive (Staphylococcus aureus, Bacillus subtilis) bacteria. Based on the inhibition zone, it was confirmed that the prepared benzyl cellulose-g-PDMAEMA possesses acceptable antibacterial activity against Escherichia coli, Salmonella enterica, and Staphylococcus aureus while Bacillus subtilis is resistant to the prepared polymer. Also according to the inhibition zone, it was shown that benzyl cellulose-g-PDMAEMA has more impact on E. coli and Salmonella enterica than Staphylococcus aureus. Molecular dynamics simulation was also used to study the interaction of the synthesized cellulose derivative with a model membrane which presented atomistic details of the polymer-lipid interactions. According to the results obtained from the molecular dynamics simulation, the polymer was able to destabilize the structure of the membrane and clearly express its signs of degradation.


Assuntos
Antibacterianos/farmacologia , Celulose/análogos & derivados , Celulose/farmacologia , Metacrilatos/farmacologia , Nylons/farmacologia , Antibacterianos/síntese química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Celulose/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metacrilatos/síntese química , Metacrilatos/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Nylons/síntese química , Nylons/metabolismo , Solubilidade
4.
Microvasc Res ; 128: 103952, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31704243

RESUMO

Testis-specific gene antigen 10 (TSGA10) is a protein overexpressed in most cancers; except for some certain types where its expression is reduced. TSGA10 overexpression in HeLa cells has been shown to disrupt hypoxia inducible factor-1α (HIF-1α) axis and exert potent inhibitory effects. Since HIF-1α is structurally and biochemically similar to HIF-2α, TSGA10 is expected to bind HIF-2α and inhibit its function as well. This study elucidated that increased expression of TSGA10 in manipulated human umbilical vein endothelial cells (HUVECs) decreased the proliferation and migration of these cells as affirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and wound healing tests, respectively. It also inhibited in vitro angiogenesis of these cells in 3D collagen-cytodex model. Expression levels of genes controlled by HIF-2α including autocrine vascular endothelial growth factor (VEGF) were also assessed using real-time PCR. Our bioinformatic analysis also showed that TSGA10 could bind HIF-2α. Moreover, flow cytometry results indicated a cell cycle arrest in G2/M. Therefore, this study showed that overexpression of TSGA10, as a tumor suppressor gene, in endothelial cells resulted in decreased proliferation, migration and therefore, angiogenic activity of HUVECs. Since angiogenesis is vital for tumor development and metastasis, our findings could be of clinical significance in cancer therapy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Comunicação Autócrina , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Proteínas do Citoesqueleto/genética , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Neurochem Res ; 44(11): 2482-2498, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31489534

RESUMO

Cuprizone (cup) model targets oligodendrocytes (OLGs) degeneration and is frequently used for the mechanistic understanding of de- and remyelination. Improperly, this classic model is time-consuming and the extent of brain lesions and behavioral deficits are changeable (both temporally and spatially) within a mouse strain. We aimed to offer an alternative, less time-consuming, and more reproducible cup model. Mice (C57BL/6) were treated with cup (400 mg kg-1 day-1/gavage) for three consecutive weeks to induce OLGs degeneration with or without YM155 (1 mg kg-1 day-1) to examine the effects of this molecule in cup neurotoxicity. Co-administration of cup and YM155 (cuYM) accelerated the intrinsic apoptosis of mature OLGs (MOG positive cells) through the upregulation of caspase-9 and caspase-3. In addition to the stimulation of oxidative stress via reduction of glutathione peroxidase and induction of malondialdehyde, behavioral deficits in both Open-field and Rota-rod tests were worsened by cuYM. In the cuYM group, the expression of BIRC5, BIRC4 and NAIP was reduced, but no significant changes were observed in the abundance of the other inhibitor of apoptosis proteins (cIAP1 and cIAP2) in comparison with the cup group. Moreover, in silico analysis validated that YM155 directly interrupts the binding sites of certain transcription factors, such as krüppel-like family (Klf), specificity proteins (SPs), myeloid zinc fingers (MZFs), zinc finger proteins (ZNFPs), and transcription factor activating enhancer-binding proteins (TFAPs), on the promoters of target genes. In conclusion, this modified model promotes cup-induced redox and apoptosis signaling, elevates behavioral deficits, saves time, minimizes variations, and can be employed for early evaluation of novel neuroprotective agents in oligodendropathies.


Assuntos
Apoptose/efeitos dos fármacos , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Sequência de Bases , Caspase 3/metabolismo , Caspase 9/metabolismo , Corpo Caloso/metabolismo , Cuprizona/farmacologia , Imidazóis/química , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Naftoquinonas/química , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas
6.
Pharm Res ; 36(4): 62, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850895

RESUMO

PURPOSE: The aim of this study is to show a new mesomicroscopic insight into Letrozole (LTZ) loaded nanocomplexes and their ex vivo characteristics as a drug delivery system. METHODS: The LTZ loaded hybrid chitosan-based carrier was fabricated using a modified ionic crosslinking technique and characterized in more detail. To understand the mechanism of LTZ action encapsulated in the hybrid polymer-lipid carrier, all-atom molecular dynamics simulations were also used. RESULTS: The physicochemical properties of the carrier demonstrated the uniform morphology, but different drug loading ratios. In vitro cytotoxic activity of the optimized carrier demonstrated IC50 of 67.85 ± 0.55 nM against breast cancer cell line. The ex vivo study showed the positive effect of nanocomplex on LTZ permeability 7-10 fold greater than the free drug. The molecular dynamic study also confirmed the prsence of hydrophobic peak of lipids at a distance of 5 Å from the center of mass of LTZ which proved drug entrapment in the core of nanocomplex. CONCLUSIONS: The hybrid nanoparticle increased the cytotoxicity and tissue permeability of LTZ for oral delivery. This study also confirmed the atomic mesostructures and interaction of LTZ in the core of hybrid polymer-lipid nanoparticles.


Assuntos
Quitosana/química , Letrozol/química , Lipídeos/química , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Masculino , Simulação de Dinâmica Molecular , Células PC12 , Tamanho da Partícula , Polímeros/química , Ratos
7.
Bioorg Chem ; 88: 102972, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078769

RESUMO

Dipyridamole (DP) elevates cyclic Adenosine Monophosphate (cAMP) levels in platelets, erythrocytes, and endothelial cells and also blocks adenosine reuptake. It is used to dilate blood vessels in people with peripheral arterial disease and coronary artery disease (CAD). The flexible backbone, hydrophobic nature, and several available hydrogen bond (H-bond) donors and acceptors are well suited structural features of DP for inhibition/activation of enzymes. Substrates of α-amylase (α-Amy) and α-Glucosidase (α-Glu), known as key absorbing enzymes, have functional groups (OH groups) similar to DP. Since hypoglycemia can occur in diabetes disease and there is a significant link between diabetes and cardiovascular diseases (CVD), thus this study aimed to evaluate the inhibitory properties of DP against α-Amy and α-Glu, as enzyme targets of interest under hypoglycemia condition. DP inhibited the α-Glu and α-Amy activity in a dose dependent manner with IC50 values 19.4 ±â€¯0.3 and 30.1 ±â€¯0.4 µM, respectively. Further, the Ki values of DP for α-Glu and α-Amy were determined as 2.9 ±â€¯0.2 and 3.1 ±â€¯0.4 µM in a competitive-mode and mixed-mode inhibition, respectively. Also, DP had binding energies of -7.3 and -6.5 kcal/mol, to communicate with the active site of α-Glu and α-Amy, respectively. In addition, in-vivo studies revealed that the blood glucose concentration diminished after taking of DP compared to positive control group (p < 0.01). Accordingly, the results of the current work may prompt the scientific community to investigate the possible interconnection between DP clinical (side) effects and its α-Glu and α-Amy inhibitory properties.


Assuntos
Dipiridamol/farmacologia , Inibidores Enzimáticos/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Animais , Dipiridamol/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Masculino , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
8.
Mikrochim Acta ; 187(1): 5, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31797120

RESUMO

An impedimetric single-shot assay is described for the determination of the proteinic breast cancer marker MUC1. The surface of a glassy carbon electrode was modified with core-shell nanofibers, multi-walled carbon nanotubes and gold nanoparticles that were covalently modified with the MUC1-binding aptamer. Detection is based on the change of the resistance of the electrode surface as measured by electrochemical impedance spectroscopy using hexacyanoferrate(II/III) as an electrochemical probe in working potential is 0.25 V. Scanning electron microscopy and cyclic voltammetry were also applied to characterize the electrode. The analytical response ranges from 5 to 115 nM of MUC1, with a detection limit of 2.7 nM. The assay was successfully applied to MUC1 determination in spiked serum samples where it gave satisfactory results. Graphical abstractAn impedimetric nanoprobe for the tumor marker MUC1 is proposed. It is based on use of electrospun honey core-shell nanofibers. The nanoprobe exhibits excellent sensitivity, good stability and a low detection limit.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Biomarcadores Tumorais/análise , Eletricidade , Mucina-1/análise , Nanofibras , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Impedância Elétrica , Eletrodos , Ferrocianetos/química , Humanos , Imunoensaio , Limite de Detecção , Mucina-1/sangue , Mucina-1/metabolismo , Nanotubos de Carbono/química
9.
J Environ Manage ; 246: 776-784, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228691

RESUMO

This study evaluates the ability of heterogeneous Fenton-like reaction (nano zero-valent iron (NZVI)/H2O2) in combination with weak magnetic field (WMF) under continuous oxygen supply by air bubbling for pollutant abatement (using ciprofloxacin as a model pollutant). The considered operating variables were initial pH, catalyst dosage, reaction time and different intensities of magnetic field. Results indicated that NZVI/H2O2/aeration/weak magnetic field could effectively decompose ciprofloxacin at neutral condition and higher removal rates are observed at higher pH and NZVI concentrations. Superimposing a weak magnetic field leads to 20% enhancement in ciprofloxacin removal by catalytic Fenton under aeration condition. Employing simultaneously magnetic field induction and aeration exhibit excellent capability to the NZVI oxidation and significantly increased the dissolution rate of iron. Based on Fourier transform infrared spectroscopy, transformation products of NZVI are Fe3O4 and FeO(OH). The faster mass transport due to Lorentz and field gradient force, more oxygen diffusion to the iron surface and promoted electrochemical reactions results in more OH° production. Generation of weak magnetic field by permanent magnets and using aeration for both mixing and in situ oxygen supply significantly enhanced the Fenton reaction performance. This combination technology doesn't need any energy input and costly chemicals hence can be used easily for wastewater treatment applications.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Peróxido de Hidrogênio , Ferro , Campos Magnéticos
10.
Hum Mol Genet ; 25(2): 233-44, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26573430

RESUMO

Several studies have shown that testis-specific gene antigen (TSGA10) could be considered as a cancer testis antigen (CTA), except for one study which has identified it as a tumor suppressor gene. In order to exert its function, TSGA10 interacts closely with hypoxia inducible factor (HIF-1α) and since this interaction is still not completely defined, the exact role of TSGA10 in angiogenesis and invasion is also under question. The current study was conducted to investigate the function of TSGA10 gene and evaluate its potential effects on tumor angiogenesis and invasion. To do so, TSGA10 vector was designed for a stable transfection in HeLa cells, and then clonal selection was applied. The efficiency of transfection and the role of TSGA10 in abovementioned targets were evaluated by real-time PCR, western blot, zymography and ELISA tests in both normoxia and hypoxia. Invasion, migration and angiogenesis were assessed. Three-dimensional model of TSGA10 protein was accurately built in which TSGA10 docked to 2 domains of HIF-1α. Increased expression of TSGA10 correlated with decreased HIF-1α transcriptional activity and inhibited angiogenesis and HeLa cells invasion in normoxia as well as hypoxia. Docking analysis indicated that binding affinity of TSGA10 with TAD-C (CBP) domain of HIF-1α would be stronger than that with PAS-B domain. Our findings showed that overexpression of TSGA10 would induce disruption of HIF-1α axis and exert potent inhibitory effects on tumor angiogenesis and metastasis. Therefore, TSGA10 could be considered as a potent therapeutic candidate, prognostic factor and a cancer management tool.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metástase Neoplásica , Neovascularização Patológica/metabolismo , Proteínas/metabolismo , Sítios de Ligação , Proteínas do Citoesqueleto , Feminino , Células HeLa , Humanos , Hipóxia , Simulação de Acoplamento Molecular
11.
Cell Mol Biol (Noisy-le-grand) ; 64(5): 85-90, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29729711

RESUMO

Detection and quantification of various biological and non-biological species today is one of the most important pillars of all experimental sciences, especially sciences related to human health. This may apply to a chemical in the factory wastewater or to identify a cancer cell in a person's body, it may be apply to trace a useful industrial microorganism or human or plant pathogenic microorganisms. In this regard, scientists from various sciences have always striven to design and provide tools and techniques for identifying and quantifying as accurately as possible to trace various analyte types with greater precision and specificity. Nano science, which has flourished in recent years and is nowadays widely used in all fields of science, also has a unique place in the design and manufacture of sensors and this, in addition to the new and special characteristics of nanoparticles, is due to the ability of nano-devices to penetrate into very tiny places to track the species. On the other hand, due to the high specificity of biological molecules in identifying and connecting to their receptors that have evolved over millions of years, Scientists are now trying to design hybrid devices using nano science and biology, called Nano-biosensors So that they can trace and quantify target molecules in very small amounts and in inaccessible places, such as within the organs and even the cells.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Biologia Molecular/métodos , Nanopartículas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Aptâmeros de Nucleotídeos/química , Humanos , MicroRNAs/análise , MicroRNAs/genética , MicroRNAs/metabolismo , Biologia Molecular/instrumentação , Imagem Molecular/métodos , Nanotecnologia/instrumentação , Neoplasias/genética , Neoplasias/metabolismo , RNA Neoplásico/análise , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Ressonância de Plasmônio de Superfície
12.
Cell Mol Biol (Noisy-le-grand) ; 64(7): 1-7, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29974838

RESUMO

Reviewing the mode of interaction between this kind of active pharmaceutical ingredients and DNA has received much more attention in current years. Anthracycline drugs such as Epirubicin are frequently used in cancer treatment for breast cancer treatment. In the present study, the Epirubicin -calf thymus DNA interaction was investigated by using spectroscopic, fluorimetric and molecular docking methods. Water-soluble quantum dots (QDs) with nanometric particle size fabricated and characterized by transmission electron microscope and photon correlation spectroscopy. The binding constant value and the free energy change for this interaction were obtained to be 3.00×106 M-1 and -42.26 kJ mol-1, using the spectroscopic method and docking investigations, respectively. Additionally, fluorescent thioglycolic acid-capped CdTe QDs were used for investigation of EPI and DNA interaction. Epirubicin as a quencher quenched the fluorescence of CdTe QDs after electrostatic adsorption on the surface of QDs. With the addition of DNA, EPI will be desorbed from the surface of CdTe QDs, inserted into the DNA. Subsequently, fluorescence changes of QDs were used for calculation of binding constant value, which was in good agreement with that obtained by the spectroscopic method. By the comparison of the achieved results, the intercalation mode of interaction between Epirubicin and DNA proved.


Assuntos
Antibióticos Antineoplásicos/química , DNA/química , Epirubicina/química , Simulação de Acoplamento Molecular , Pontos Quânticos/química , Espectrofotometria Ultravioleta , Cloreto de Cádmio/química , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Nanopartículas/química , Tamanho da Partícula , Telúrio/química , Tioglicolatos/química
13.
Ecotoxicol Environ Saf ; 162: 17-28, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29957404

RESUMO

Octanol/water partition coefficient (log P), octanol/air partition coefficient (log KOA) and bioconcentration factor (log BCF) are important physiochemical properties of organic substances. Quantitative structure-property relationship (QSPR) models are a promising alternative method of reducing and replacing experimental steps in determination of log P, log KOA and log BCF. In the current study, we propose a new QSPR model based on a deep belief network (DBN) to predict the physicochemical properties of polychlorinated biphenyls (PCBs). The prediction accuracy of the proposed model was compared to the results of previous reported models. The predictive ability of the DBN model, validated with a test set, is clearly superior to the other models. All results showed that the proposed model is robust and satisfactory, and can effectively predict the physiochemical properties of PCBs without highly reliable experimental values.


Assuntos
Bifenilos Policlorados/química , Modelos Químicos , Octanóis/química , Relação Quantitativa Estrutura-Atividade , Água/química
14.
J Enzyme Inhib Med Chem ; 32(1): 20-28, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27766897

RESUMO

Purple acid phosphatases (PAPs) are binuclear metallo-hydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals, PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. The aim of the present study was to investigate inhibitory effect of synthesized diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives as potential red kidney bean PAP (rkbPAP) inhibitors accompanied by experimental and molecular modeling assessments. Enzyme kinetic data showed that they are good rkbPAP inhibitors whose potencies improve with increasing alkyl chain length. Hexadecyl derivatives, as most potent compounds (Ki = 1.1 µM), inhibit rkbPAP in the mixed manner, while dodecyl derivatives act as efficient noncompetitive inhibitor. Also, analysis by molecular modeling of the structure of the rkbPAP-inhibitor complexes reveals factors, which may be important for the determination of inhibition specificity.


Assuntos
Fosfatase Ácida/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicoproteínas/antagonistas & inibidores , Modelos Moleculares , Ácidos Fosforosos/farmacologia , Fosfatase Ácida/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Glicoproteínas/metabolismo , Humanos , Estrutura Molecular , Phaseolus/enzimologia , Ácidos Fosforosos/síntese química , Ácidos Fosforosos/química , Relação Estrutura-Atividade
15.
Luminescence ; 31(2): 587-593, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26311532

RESUMO

The binding of prantschimgin (PRAN) to matrix metalloproteinase 9 (MMP9) was investigated using multiple techniques. Fluorescence spectroscopy showed that PRAN could quench the MMP9 fluorescence spectra. Changes in the UV/vis and Fourier transform infrared (FTIR) spectra were observed upon ligand binding, along with a significant degree of tryptophan fluorescence quenching on complex formation. The interaction of PRAN with MMP9 has also been studied using molecular docking and molecular dynamics (MD) simulation. The binding models demonstrated aspects of PRAN's conformation, active site interaction, important amino acids and hydrogen bonding. Computational mapping of the possible binding site of PRAN revealed that the ligand is bound in a large hydrophobic cavity of MMP9. The MD simulation results suggested that this ligand can interact with the protein, with little affecting the secondary structure. The results not only lead to a better understanding of interactions between PRAN and MMP9, but also provide useful data about the influence of PRAN on the structural conformation. The data provided in this study will be useful for designing a new agonist of MMP9 with the desired activity.


Assuntos
Cumarínicos/química , Metaloproteinase 9 da Matriz/química , Modelos Moleculares , Metaloproteinase 9 da Matriz/metabolismo , Estrutura Molecular , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sci Rep ; 14(1): 13183, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851799

RESUMO

Excessive Cu2+ intake can cause neurological disorders (e.g. Wilson's disease) and adversely affect the gastrointestinal, liver, and kidney organs. The presence of Cu2+ is strongly linked to the emergence and progression of Wilson's disease (WD), and accurately measuring the amount of copper is a crucial step in diagnosing WD at an early stage in a clinical setting. In this work, CQDs were fabricated through a facile technique as a novel fluorescence-based sensing platform for detecting Cu(II) in aqueous solutions, and in the serum samples of healthy and affected individuals by WD. The CQDs interact with Cu(II) ions to produce Turn-on and Turn-off states at nano-molar and micro-molar levels, respectively, with LODs of 0.001 µM and 1 µM. In fact, the Cu2+ ions can act like a bridge between two CQDs by which the charge and electron transfer between the CQDs may increase, possibly can have significant effects on the spectroscopic features of the CQDs. To the best of our knowledge, this is the first reported research that can detect Cu(II) at low levels using two different complexation states, with promising results in testing serum. The potential of the sensor to detect Cu(II) was tested on serum samples from healthy and affected individuals by WD, and compared to results obtained by ICP-OES. Astonishingly, the results showed an excellent correlation between the measured Cu(II) levels using the proposed technique and ICP-OES, indicating the high potential of the fluorimetric CQD-based probe for Cu(II) detection. The accuracy, sensitivity, selectivity, high precision, accuracy, and applicability of the probe toward Cu(II) ions make it a potential diagnostic tool for Wilson's disease in a clinical setting.


Assuntos
Cobre , Degeneração Hepatolenticular , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/sangue , Cobre/sangue , Humanos , Espectrometria de Fluorescência/métodos , Limite de Detecção
17.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285617

RESUMO

In this study, the inhibitory potential of 99 fungal derived secondary metabolites was predicted against SARS-CoV-2 main protease by using of computational approaches. This protein plays an important role in replication and is one of the important targets to inhibit viral reproduction. Among the 99 reported compounds, the 9 of them with the highest binding energy to Mpro obtained from the molecular docking method were selected for the molecular dynamic simulations. The compounds were then investigated by using the SwissADME serve to evaluate the compounds in terms of pharmacokinetic and druglikness properties. The overall results of different analysis show that the compound RKS-1778 is potentially more effective than others and form strong complexes with viral protease. It also had better pharmacokinetic properties than other metabolites, so predicted to be a suitable candidate as anti SARS-CoV-2 bioactive.Communicated by Ramaswamy H. Sarma.

18.
J Enzyme Inhib Med Chem ; 28(1): 16-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21999517

RESUMO

A computational procedure was performed on some indenopyrazole derivatives. Two important procedures in computational drug discovery, namely docking for modeling ligand-receptor interactions and quantitative structure activity relationships were employed. MIA-QSAR analysis of the studied derivatives produced a model with high predictability. The developed model was then used to evaluate the bioactivity of 54 proposed indenopyrazole derivatives. In order to confirm the obtained results through this ligand-based method, docking was performed on the selected compounds. An ADME-Tox evaluation was also carried out to search for more suitable compounds. Satisfactory bioactivities and ADME-Tox profiles for two of the compounds, namely 62 and S13, propose that further studies should be performed on such devoted chemical structures.


Assuntos
Antineoplásicos/farmacologia , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Pirazóis/química , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/química , Calibragem , Ligantes , Simulação de Acoplamento Molecular
19.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608542

RESUMO

In this study the efficacy of different edible lipids for drug permeation enhancement of vancomycin through biological membrane was investigated using molecular dynamic simulation. In this regard, at first the ability of the lipids for complex formation with the drug was evaluated for number of most common edible lipids including tripalmitin (TPA), trimyristin (TMY), labrafil (LAB), glycerol monostearate (GMS), glycerol monooleate (GMO), Distearoylphosphorylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), Dipalmitoylphosphatidylcholine (DPPC), cholesterol (CL), stearic acid (SA), palmitic acid (PA) and oleic acid (OA). Then the complexes were pulled thorough a bilayer membrane while the changes in force were probed. The results showed that besides the SA, PA and OA the other examined lipids were able to perform a perfect molecular complex with the drug. Also the results of pulling simulation revealed that the least of force was needed for drug transmittance through the membrane when it was covered by LAB, TMY and DSPE. These results indicated that these lipids can be the excellent materials of choice as permeation enhancer for preparing a proper oral formulation of vancomycin.Communicated by Ramaswamy H. Sarma.

20.
J Biomol Struct Dyn ; 41(19): 10117-10124, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36476279

RESUMO

In this study, the interaction of an anticonvulsant drug that used in the treatment of epilepsy, Lamotrigine (LTG) with the most important transport protein of the blood, human serum albumin (HSA) has been studied by using the electrochemical methods and molecular modeling techniques. For this purpose, a simple carbon paste electrode (CPE) was applied for electrocatalytic oxidation and investigation of LTG interaction with HSA. The stoichiometry of the complex between LTG and HSA and the binding constant (Kb) of the reaction were calculated from the calibration curves. The results show that binding of LTG to HSA formed two complexes with different stoichiometries with Kb1 (2.46 × 103) and Kb2 (1.75 × 107), respectively. In agreement with the experimental data, molecular modeling approach also confirmed that LTG can bind to the subdomain IIA and IB of HSA.Communicated by Ramaswamy H. Sarma.


Assuntos
Anticonvulsivantes , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Lamotrigina , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação , Termodinâmica , Espectrometria de Fluorescência , Dicroísmo Circular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa