RESUMO
The escalating issue of air pollution has become a significant concern in urban regions, including Islamabad, Pakistan, due to the rise in air pollutant emissions driven by economic and industrial expansion. To gain a deeper understanding of air pollution, a study was conducted during winter 2022-2023, assessing physical, chemical, and biological factors in Islamabad. The findings revealed that the average concentration of fine particulate matter (PM2.5) was notably greater than the World Health Organization (WHO) guidelines, reaching 133.39 µg/m³. Additionally, the average concentration of bacteria (308.64 CFU/m³) was notably greater than that of fungi (203.55 CFU/m³) throughout the study. Analytical analyses, including SEM-EDS and FTIR, showed that the PM2.5 in Islamabad is composed of various particles such as soot aggregates, coal fly ash, minerals, bio-particles, and some unidentified particles. EF analysis distinguished PM2.5 sources, enhancing understanding of pollutants origin, whereas Spearman's correlation analysis elucidated constituent interactions, further explaining air quality impact. The results from the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) indicated a gradual increase in the total elemental composition of PM2.5 from autumn to winter, maintaining high levels throughout the winter season. Furthermore, a significant variation was found in the mass concentration of PM2.5 when comparing samples collected in the morning and evening. The study also identified the presence of semi-volatile organic compounds (SVOCs) in PM2.5 samples, including polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds, with notable variations in their concentrations. Utilizing health risk assessment models developed by the US EPA, we estimated the potential health risks associated with PM2.5 exposure, highlighting the urgency of addressing air quality issues. These findings provide valuable insights into the sources and composition of PM2.5 in Islamabad, contributing to a comprehensive understanding of air quality and its potential environmental and health implications.
Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Paquistão , Poluentes Atmosféricos/análise , Humanos , Monitoramento Ambiental , Cidades , Tamanho da Partícula , Poluição do Ar/análiseRESUMO
Two-dimensional (2D) transition metal carbides and nitrides (MXenes) have drawn considerable attention for application in the field of environmental remediation. In this study, we report the simultaneous reductive-adsorption behavior of Ti3CNTx for toxic metal ion Hg2+ ion in the aqueous phase. 2D Ti3CNTx and Ti3C2Tx MXene nanosheets were synthesized by exfoliation of Ti3AlCN and Ti3AlC2 MAX phases, respectively. Various characteristics analysis confirmed the successful fabrication of MAX phases and their exfoliation into MXenes. The fabricated MXene nanosheets were used to investigate their Hg2+ removal, Hg2+ intercalation, and surface interaction mechanism efficiencies. Both MXenes were found to adsorb and reduce a large amount of Hg2+. Analytical techniques such as X-ray powder diffraction, field emission transmission electron microscopy, zeta-potential analyses, and X-ray photoelectron spectroscopy were used to investigate the material characteristics and structural changes after uptake of Hg2+. The quantitative investigation confirmed the interaction of bimetal and hydroxyl groups with Hg2+ using electrostatic interactions and adsorption-coupled reduction. In addition, both MXenes exhibited extraordinary Hg ion removal capabilities in terms of fast kinetics with an excellent distribution coefficient (KdHg) up to 1.36 × 10+9. Based on batch adsorption results, Ti3C2Tx and Ti3CNTx exhibited removal capacities of 5473.13 and 4606.04 mg/g, respectively, for Hg2+, which are higher than those of previous Hg adsorbents.
RESUMO
The main purpose of this study was to investigate reciprocal relationships between abusive supervision, subordinates' emotional exhaustion, and job neglect, and to examine the mediating role of emotional exhaustion in the cross-lagged relationship between abusive supervision and job neglect. Besides, we tested the moderating role of self-compassion in the cross-lagged relationship between abusive supervision and emotional exhaustion. We applied a two-wave cross-lagged panel design with a time lag of six months. Participants were 331 staff nurses of public sector hospitals in Islamabad, Pakistan. Data were collected using a self-report questionnaire at two points in time. Longitudinal structural equation modeling (SEM) was used to compare nested models. Results of cross-lagged SEM analyses supported the posited reciprocal model, indicating that abusive supervision, emotional exhaustion, and job neglect are mutually related. Results of mediation analysis showed that emotional exhaustion partially mediates the cross-lagged relationship between abusive supervision and job neglect. Further, we found that self-compassion attenuates the positive cross-lagged effect of abusive supervision on emotional exhaustion, and the indirect effect of abusive supervision on job neglect was weaker at higher levels of self-compassion. Our findings suggest that subordinates may find themselves in abusive relationships, in part, because their own behavioral responses to abuse can reinforce abusive supervision. Moreover, we identified the stress-buffering effect of self-compassion on emotional exhaustion.
RESUMO
The rapid transmission tendency, severity, and wide geographical spread of newly emerged novel coronavirus (SARS-CoV-2) in different environmental matrices, including water, air, and soil, has posed severe health, environmental, energy, and economic challenges worldwide. Despite the severe health effects, unprecedented improvements in air quality in many countries due to emergency measures, and public behavior changes have been reported. SARS-CoV-2 has been detected in air and sewage samples in several studies across the globe. The use of wastewater-based epidemiology (WBE) could be a valuable method to monitor the outbreak of COVID-19, which requires fast and reliable methods for virus detection in sewage. However, water treatment companies face many pressures due to potential for aerosolization, PPE shortages, and changed usage patterns. In addition, the unprecedented impact of the COVID-19 outbreak on the worldwide economy especially the energy sector, and its impact on our ecosystem required instant responses. This article discusses the recent developments and challenges faced in water, air, and energy resources, including renewables and non-renewables as the significant and interrelated components of the ecosystem. Furthermore, some recommendations have been directed, which may serve as a guideline to the scientists, legislators, and other stakeholders. A future roadmap has been proposed to overcome the tragic effects of COVID-19 and developing a sustainable environmental system to minimize the impact of such infectious outbreaks in the future.
Assuntos
COVID-19 , Pandemias , Ecossistema , Humanos , SARS-CoV-2 , EsgotosRESUMO
The liver is a fundamental metabolic organ that performs many essential functions including the detoxification of toxic substances present in the body. Exposure to various toxicants leads the liver towards hepatic injury. This study was planned to estimate the hepatoprotective and regenerative efficacy of Quinoa seeds (Chenopodium quinoa) extract against carbon tetrachloride (CCl4) induced liver damage. At a dose of 1ml/kg (153.8mg/kg) body weight carbon tetrachloride (CCl4) was used intraperitoneally to induce hepatic injury in Wistar rats. Silymarin (30mg/kg body weight, p.o.), an antioxidant was used as a reference standard drug. Subsequently, ethanolic extract of Quinoa seeds (QEE) was administered at 400 and 600mg/kg body weight through oral gavage. Various biochemical and regenerative biomarkers were assessed to evaluate the potential efficacy of QEE in liver tissue regeneration. Results revealed that QEE administration significantly reduced the CCl4-induced raised quantities of alanine transaminase (ALT), aspartate transaminase (AST), and total oxidative stress (TOS) while, significantly improved the level of triiodothyronine (T3), thyroxine (T4), albumin and total protein concentration in QEE treated groups. The expression level of IGF-1, FOXA-2, Stmn-2, SPP-1 was found significantly down-expressed. It is concluded that QEE treatment has the regenerative and hepatoprotective effect.
Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Chenopodium quinoa , Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes , Animais , Antioxidantes/isolamento & purificação , Biomarcadores/sangue , Tetracloreto de Carbono , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Chenopodium quinoa/química , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Sementes/química , Silimarina/farmacologiaRESUMO
In this study, a magnetic titanium carbide (Ti3C2Tx) MXene was synthesized through a one-step chemical co-precipitation method using ammonium bifluoride as a mild etchant and was investigated for photocatalytic degradation of diclofenac (DCF) via the ultraviolet (UV)/chlorine process. The DCF degradation was enhanced by the generation of active radicals such as the hydroxyl radical and reactive chlorine species compared with that resulting from UV and chlorination treatment alone as well as UV/H2O2 processes at pH 7. The first-order rate constant of the UV/chlorine process was 0.1025 min-1, which is 12.7 and 6.8 times higher than those of the only UV and UV/H2O2 processes, respectively. Magnetic nanoparticles on the surfaces of Ti3C2Tx sheets not only enhanced the adsorption capacity of the synthesized composite but also increased the rate of electron transfer in solution. In addition, the effects of different operating conditions such as magnetic Ti3C2Tx dose, pH, and initial chlorine concentration on DCF degradation were investigated. Magnetic Ti3C2Tx showed high stability and photodegradation efficiency during seven consecutive degradation reaction cycles. The derivatives of DCF during the photocatalytic degradation process were also investigated based on the observed intermediate products and a degradation pathway was proposed. Thus the synthesized magnetic Ti3C2Tx is a simple and affordable photocatalyst, which can significantly enhance DCF degradation in the UV/chlorine advanced oxidation process.
Assuntos
Diclofenaco , Poluentes Químicos da Água , Purificação da Água , Cloro , Diclofenaco/química , Peróxido de Hidrogênio , Cinética , Oxirredução , Titânio , Raios UltravioletaRESUMO
A heterogeneous nanoadsorbent composed of two-dimensional Ti3C2Tx MXene nanosheets (MX) functionalized with nanolayered molybdenum disulfide (MoS2/MX-II) was synthesized by a facile hydrothermal treatment method and used to remove toxic mercuric ions (Hg2+). Mercury was adsorbed by the synergistic action of the sulfur (disulfide) and the oxygenated terminal groups of Ti3C2Tx in the MoS2-MX-II composite. Ultrasonication increased the surface area and interlayer distance of the Ti3C2Tx nanosheets, which enhanced the removal capability of the composite. As a result, 50 µmol/L of Hg2+ was reduced to 0.01 µmol/L in just 120 s, which is unprecedented kinetic behavior for mercury adsorption. Furthermore, the Langmuir adsorption isotherm fitted well with the adsorption data and revealed a maximum adsorption capacity of 7.16 mmol/g. To provide a practical demonstration of MoS2/MX-II, it was applied to mercury-contaminated wastewater, whose results showed that MoS2/MX-II was capable of removing Hg2+ at the ppb level with a distribution coefficient of 7.87 × 105 mL/g in the co-presence of various metal ions. Hydrothermal stability tests and SEM analysis confirmed the stability of MoS2-MX-II after it adsorbed a high concentration of Hg2+. Furthermore, MoS2-MX-II exhibited excellent recyclability as 0.08 mM of Hg2+ was completely removed even after five cycles. The results suggest the practical applicability of this type of heterogeneous nanocomposite for water purification.
Assuntos
Dissulfetos , Mercúrio , Molibdênio , Nanocompostos , Poluentes Químicos da Água , Adsorção , Dissulfetos/química , Molibdênio/química , Poluentes Químicos da Água/químicaRESUMO
This study presents an environmentally friendly synthesis of stable silver nanoparticles (Ag-NPs) using the methanolic extract of Breynia nivosa. Initial phytochemical analysis of the extract revealed the presence of alkaloids, flavonoids, glycosides, saponins, and tannins. Further characterization through high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) analyses identified a diverse array of bioactive compounds, including hydroquinone, stearic acid, neophytadiene, 9,12-octadecadienoic acid (Z,Z), methyl ester, and others. The addition of B. nivosa methanolic extract to an AgNO3 solution resulted in a color change, confirming the green synthesis of Ag-NPs through the reduction of AgNO3, as made evident by ultraviolet-visible (UV-vis) spectroscopy. X-ray diffraction (XRD) analysis provided valuable insights into the crystal structure, and scanning electron microscopy (SEM) analysis visualized the predominantly spherical shape of the Ag-NPs. However, the zeta (ζ)-potential and dynamic light scattering (DLS) analyses confirmed the stability and nanoscale dimensions of the synthesized Ag-NPs. Meanwhile, Fourier transform infrared (FT-IR) spectra exhibited peaks indicative of various functional groups, including carboxylic acids, phenols, alkanes, and isocyanates. These functional groups played a crucial role in both the reduction and capping processes of the Ag-NPs. The study further explored the antioxidant activity, cytotoxicity, acetylcholinesterase inhibition, and α-amylase inhibition activities of the Ag-NPs of the B. nivosa extract, demonstrating their potential for biomedical and therapeutic applications. In conclusion, this environmentally sustainable synthesis of Ag-NPs from the B. nivosa extract, enriched with bioactive secondary metabolites detected through HPLC and GC-MS analysis, holds promise for diverse applications in the burgeoning field of green nanotechnology.
RESUMO
Hepatitis C virus (HCV) is a globally prevalent and hazardous disorder that is responsible for inducing several persistent and potentially fatal liver diseases. Current treatment strategies offer limited efficacy, often accompanied by severe and debilitating adverse effects. Consequently, there is an urgent and compelling need to develop novel therapeutic interventions that can provide maximum efficacy in combating HCV while minimizing the burden of adverse effects on patients. One promising target against HCV is the NS3-4A serine protease, a complex composed of two HCV-encoded proteins. This non-covalent heterodimer is crucial in the viral life cycle and has become a primary focus for therapeutic interventions. Although peginterferon, combined with ribavirin, is commonly employed for HCV treatment, its efficacy is hampered by significant adverse effects that can profoundly impact patients' quality of life. In recent years, the development of direct-acting antiviral agents (DAAs) has emerged as a breakthrough in HCV therapy. These agents exhibit remarkable potency against the virus and have demonstrated fewer adverse effects when combined with other DAAs. However, it is important to note that there is a potential for developing resistance to DAAs due to alterations in the amino acid position of the NS3-4A protease. This emphasizes the need for ongoing research to identify strategies that can minimize the emergence of resistance and ensure long-term effectiveness. While the combination of DAAs holds promise for HCV treatment, it is crucial to consider the possibility of drug-drug interactions. These interactions may occur when different DAAs are used concurrently, potentially compromising their therapeutic efficacy. Therefore, carefully evaluating and monitoring potential drug interactions are vital to optimize treatment outcomes. In the pursuit of novel therapeutic interventions for HCV, the field of computational biology and bioinformatics has emerged as a valuable tool. These advanced technologies and methodologies enable the development and design of new drugs and therapeutic agents that exhibit maximum efficacy, reduced risk of resistance, and minimal adverse effects. By leveraging computational approaches, researchers can efficiently screen and optimize potential candidates, accelerating the discovery and development of highly effective treatments for HCV, treatments.
Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Qualidade de Vida , Hepatite C Crônica/tratamento farmacológico , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/farmacologia , Hepatite C/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/químicaRESUMO
Brittle shear failure of beam-column joints, especially during seismic events poses a significant threat to structural integrity. This study investigates the potential of steel fiber reinforced concrete (SFRC) in the joint core to enhance ductility and overcome construction challenges associated with traditional reinforcement. A non-linear finite element analysis (NLFEA) using ABAQUS software was conducted to simulate the behavior of SFRC beam-column joints subjected to cyclic loading. Ten simulated specimens were analyzed to discern the impact of varying steel fiber volume fraction and aspect ratio on joint performance. Key findings reveal that a 2% volume fraction of steel fibers in the joint core significantly improves post-cracking behavior by promoting ductile shear failure, thereby increasing joint toughness. While aspect ratio variations showed minimal impact on load capacity, long and thin steel fibers effectively bridge cracks, delaying their propagation. Furthermore, increasing steel fiber content resulted in higher peak-to-peak stiffness. This research suggests that strategically incorporating SFRC in the joint core can promote ductile shear failure, enhance joint toughness, and reduce construction complexities by eliminating the need for congested hoops. Overall, the developed NLFEA model proves to be a valuable tool for investigating design parameters in SFRC beam-column joints under cyclic loading.
RESUMO
Cadmium, a ubiquitous environmental pollutant, has been implicated in the disruption of various metabolic pathways, contributing to the development of insulin resistance, glucose intolerance, and associated metabolic disorders. This study aimed to investigate the cadmium chloride (CdCl2) exposure on metabolic pathways and to assess the potential therapeutic efficacy of the taxifolin-enriched extract in mitigating these disruptions by modulating biochemical pathways. Taxifolin-enriched extract (TEE) was prepared from Pinus roxburghii bark using a green extraction method. About 60 Wistar albino rats were divided into six groups: the control group (n = 10), the CdCl2 group (30 mg/kg) (n = 10), and four groups (each comprises n = 10) treated with 30 mg/kg CdCl2 in combination with metformin (100 mg/kg), ascorbic acid, taxifolin (30 mg/kg), and TEE (30 mg/kg), respectively. After the treatment period of 1 month, a comprehensive assessment of metabolic biomarkers and gene expressions that regulate the metabolism of carbohydrates and lipids was conducted to evaluate the impact of CdCl2 exposure and the potential protective effects of TEE. The results revealed that CdCl2 exposure significantly increased (P < 0.001) serum levels of α-glucosidase, α-amylase, insulin, G6PC, hexokinases, TGs, LDL, HMG-CoA reductase, and pro-inflammatory cytokines such as IL-6 and TNF-α. Conversely, CdCl2 exposure led to a reduction in HDL, antioxidant enzyme levels, phosphofructokinases, and glucose-6-phosphatase dehydrogenase. However, the administration of TEE alongside CdCl2 substantially mitigated (P < 0.001) these fluctuations in metabolic and inflammatory biomarker levels induced by CdCl2 exposure. Both TEE and taxifolin treatment effectively lowered the elevated levels of α-amylase, α-glucosidase, G6PC, insulin, TGs, HMG-CoA reductase, leptin, ALT, AST, blood urea nitrogen, creatinine, and pro-inflammatory cytokines while simultaneously enhancing levels of HDL cholesterol and antioxidant enzymes. Moreover, CdCl2 exposure suppressed mRNA expression of critical metabolic biomarkers such as glucose transporter 2 (GLUT2), insulin-like growth factor 1 (IGF-1), lactate dehydrogenase, and HMG-CoA lyases while upregulating the mRNA expression of angiotensin receptor 2 and vasopressin, key metabolic biomarkers involved in glucose metabolism and insulin regulation. TEE demonstrated the potential to restore normal metabolic functions and reduce the adverse impacts caused by CdCl2 exposure by mitigating disturbances in several metabolic pathways and restoring gene expression of critical metabolic biomarkers related to glucose metabolism and insulin regulation. Nevertheless, further investigation is warranted to comprehensively understand the underlying mechanisms and optimize the appropriate dosage and duration of TEE treatment for achieving the most effective therapeutic outcomes.
RESUMO
A magnetic perovskite-spinel oxide nanocomposite synthesized through a sol-gel self-combustion process is used for the first time as an adsorbent to remove toxic heavy metals (i.e., Pb2+). The synthesized LaFeO3:CoFe2O4 ((LFO)1:(CFO)x) (x = 0.11-0.87) nanocomposites possess good stability, abundant oxygenated active binding sites, and unique structural features, making them suitable for removing divalent Pb2+ ions. Scanning electron microscopy, X-ray diffraction, BET surface area, magnetization measurements, zeta-potential analyses, and X-ray photoelectron spectroscopy were used to analyze the nanocomposites, and their structural changes after Pb2+ ions adsorption. Batch tests confirmed that (LFO)1:(CFO)x efficiently removes Pb2+ from water with a maximum adsorption capacity of 105.96 mg/g. The detailed quantitative study indicates that the interaction of hydroxyl groups with Pb2+ ions occurs through electrostatic interactions and complex formation. We also demonstrate a new ring-magnetic separator system that allows magnetic separation of the toxic ions at a higher speed compared to traditional block magnets. The unique structure, high porosity, large specific surface area, and oxygenated functional groups of (LFO)1:(CFO)x nanocomposites make them promising materials for removal of heavy metal ions and possibly other environmental pollutants. This study provides a new approach to preparing nanocomposites of magnetic spinel ferrites with perovskite oxides for environmental applications.
RESUMO
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are wellknown for their antioxidant and antiinflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Assuntos
Carcinoma de Células Renais , Flavonoides , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Glicólise/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácidos Graxos/metabolismo , Reprogramação MetabólicaRESUMO
Metabolic disorders pose significant global health challenges, necessitating innovative therapeutic approaches. This study focused on the multifaceted therapeutic potential of berberine-enriched extract (BEE) in mitigating metabolic impairment induced by streptozotocin (STZ) in a rat model and compared the effects of BEE with berberine (BBR) and metformin (MET) to comprehensively evaluate their impact on various biochemical parameters. Our investigation reveals that BEE surpasses the effects of BBR and MET in ameliorating metabolic impairment, making it a promising candidate for managing metabolic disorders. For this, 30 male Wistar rats were divided into five groups (n = 6): control (CN), STZ, STZ + MET, STZ + BBR, and STZ + BEE. The treatment duration was extended over 4 weeks, during which various biochemical parameters were monitored, including fasting blood glucose (FBG), lipid profiles, inflammation, liver and kidney function biomarkers, and gene expressions of various metabolizing enzymes. The induction of metabolic impairment by STZ was evident through an elevated FBG level and disrupted lipid profiles. The enriched extract effectively regulated glucose homeostasis, as evidenced by the restoration of FBG levels, superior to both BBR and MET. Furthermore, BEE demonstrated potent effects on insulin sensitivity, upregulating the key genes involved in carbohydrate metabolism: GCK, IGF-1, and GLUT2. This highlights its potential in enhancing glucose utilization and insulin responsiveness. Dyslipidemia, a common occurrence in metabolic disorders, was effectively managed by BEE. The extract exhibited superior efficacy in regulating lipid profiles. Additionally, BEE exhibited significant anti-inflammatory properties, surpassing the effects of BBR and MET in lowering the levels of inflammatory biomarkers (IL-6 and TNF-α), thereby ameliorating insulin resistance and systemic inflammation. The extract's superior hepatoprotective and nephroprotective effects, indicated by the restoration of liver and kidney function biomarkers, further highlight its potential in maintaining organ health. Moreover, BEE demonstrated potent antioxidant properties, reducing oxidative stress and lipid peroxidation in liver tissue homogenates. Histopathological examination of the pancreas underscored the protective effects of BEE, preserving and recovering pancreatic ß-cells damaged by STZ. This collective evidence positions BEE as a promising therapeutic candidate for managing metabolic disorders and offers potential benefits beyond current treatments. In conclusion, our findings emphasize the remarkable therapeutic efficacy of BEE and provide a foundation for further research into its mechanisms, long-term safety, and clinical translation.
RESUMO
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90â¯% of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100â¯nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
RESUMO
This study aims to examine how social undermining restrains employee creativity. Specifically, an attempt is made to investigate the serial mediating role of interpersonal distrust and knowledge hiding in the relationship between social undermining and employee creativity. This study used purposive sampling to draw 309 employees from the advertising agencies of Pakistan. We used a time-lagged research design to collect the data on the measures at three different points in time. A self-administered questionnaire was used for the collection of data. We followed variance-based structural equation modeling (SEM) to conduct the data analysis in SmartPLS. Our study results indicated a significant negative association between social undermining and employee creativity, while serial mediation analysis showed that interpersonal distrust and knowledge hiding partially mediated the above linkage. This study's findings contribute to the literature on employee creativity by identifying and testing social undermining as an interpersonal inhibitor factor that impairs employee creativity, and this relationship is serially mediated by interpersonal distrust and knowledge hiding. This study offers valuable insights for the managers of advertising agencies.
RESUMO
MAX phases are the parent materials used for the formation of MXenes, and are generally obtained by etching using the highly corrosive acid HF. To develop a more environmentally friendly approach for the synthesis of MXenes, in this work, titanium aluminum carbide MAX phase (Ti2AlC) was fabricated and etched using NaOH. Further, magnetic properties were induced during the etching process in a single-step etching process that led to the formation of a magnetic composite. By carefully controlling etching conditions such as etching agent concentration and time, different structures could be produced (denoted as M.Ti2CTx). Magnetic nanostructures with unique physico-chemical characteristics, including a large number of binding sites, were utilized to adsorb radionuclide Sr2+ and Cs+ cations from different matrices, including deionized, tap, and seawater. The produced adsorbents were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The synthesized materials were found to be very stable in the aqueous phase, compared with corrosive acid-etched MXenes, acquiring a distinctive structure with oxygen-containing functional moieties. Sr2+ and Cs+ removal efficiencies of M.Ti2CTx were assessed via conventional batch adsorption experiments. M.Ti2CTx-AIII showed the highest adsorption performance among other M.Ti2CTx phases, with maximum adsorption capacities of 376.05 and 142.88 mg/g for Sr2+ and Cs+, respectively, which are among the highest adsorption capacities reported for comparable adsorbents such as graphene oxide and MXenes. Moreover, in seawater, the removal efficiencies for Sr2+ and Cs+ were greater than 93% and 31%, respectively. Analysis of the removal mechanism validates the electrostatic interactions between M.Ti2C-AIII and radionuclides.
RESUMO
The 2D transition metal carbides/nitrides (2D MXenes) are a versatile class of 2D materials for photovoltaic (PV) systems. The numerous advantages of MXenes, including their excellent metallic conductivity, high optical transmittance, solution processability, tunable work-function, and hydrophilicity, make them suitable for deployment in PV technology. This comprehensive review focuses on the synthesis methodologies and properties of MXenes and MXene-based materials for PV systems. Titanium carbide MXene (Ti3 C2 Tx ), a well-known member of the MXene family, has been studied in many PV applications. Herein, the effectiveness of Ti3 C2 Tx as an additive in different types of PV cells, and the synergetic impact of Ti3 C2 Tx as an interfacial material on the photovoltaic performance of PV cells, are systematically examined. Subsequently, the utilization of Ti3 C2 Tx as a transparent conductive electrode, and its influence on the stability of the PV cells, are discussed. This review also considers problems that emerged from previous studies, and provides guidelines for the further exploration of Ti3 C2 Tx and other members of the 2D MXene family in PV technology. This timely study is expected to provide comprehensive understanding of the current status of MXenes, and to set the direction for the future development in 2D material design and processing for PVs.