RESUMO
BACKGROUND: SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α). METHODS: We performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. RESULTS: We identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. CONCLUSION: Our results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.
RESUMO
Metabolic syndrome (MetS) is a complex disease involving multiple physiological, biochemical, and metabolic abnormalities. The search for reliable biomarkers may help to better elucidate its pathogenesis and develop new preventive and therapeutic strategies. In the present population-based study, we looked for biomarkers of MetS among obesity- and inflammation-related circulating factors and body composition parameters in 1079 individuals (with age range between 18 and 80) belonging to an ethnically homogeneous population. Plasma levels of soluble markers were measured by using ELISA. Body composition parameters were assessed using bioimpedance analysis (BIA). Statistical analysis, including mixed-effects regression, with MetS as a dependent variable, revealed that the most significant independent variables were mainly adipose tissue-related phenotypes, including fat mass/weight (FM/WT) [OR (95% CI)], 2.77 (2.01-3.81); leptin/adiponectin ratio (L/A ratio), 1.50 (1.23-1.83); growth and differentiation factor 15 (GDF-15) levels, 1.32 (1.08-1.62); inflammatory markers, specifically monocyte to high-density lipoprotein cholesterol ratio (MHR), 2.53 (2.00-3.15), and a few others. Additive Bayesian network modeling suggests that age, sex, MHR, and FM/WT are directly associated with MetS and probably affect its manifestation. Additionally, MetS may be causing the GDF-15 and L/A ratio. Our novel findings suggest the existence of complex, age-related, and possibly hierarchical relationships between MetS and factors associated with obesity.
Assuntos
Síndrome Metabólica , Humanos , Teorema de Bayes , Fator 15 de Diferenciação de Crescimento , Composição Corporal , Biomarcadores , Obesidade , AdiponectinaRESUMO
BACKGROUND: Short stature is a common finding among the general population, mostly presented as an isolated phenotype. The syndromic short statute is rare and complex. Recently, we examined several patients from related families sharing both short stature and congenital dental abnormalities. OBJECTIVES: 1. Clinical characterization of syndromic short stature; 2. To find the disease mutation and evaluate the carrier state in the particular community. METHODS: Clinical characterization- by medical history, medical records and physical examination; Homozygosity mapping - by using the Single nucleotide polymorphism (SNP) chromosomal microarrays (CMA) analysis and gene mutation detection by ABI Sanger sequence. RESULTS: All patients present with short stature severe dental anomalies including enamel formation and mineralization defect, oligodontia, abnormal shape and retarded eruption. CMA analysis in 3 patients and 2 healthy members of four families was normal. One homozygote region in chromosome 11 (11p11.2- 11q13.3) was found in all patients. By using the candidate gene approach, amongst the 301 genes found within this region, only one, the LTBP3 gene (Latent Transforming Growth Factor-Beta-Binding Protein-3) has high priority for sequence. Hence, LTBP3 (OMIM-602090) pathogenic variant is responsible for "brachyolmia with amelogenesis imperfecta" also known as "Dental Anomalies and Short Stature (DASS)" (OMIM- 601216). We sequenced all 29 LTBP3 exons and a novel splice pathogenic variant, c.1346-1G>A chr11:65319629, in exon 8 was identified. The variant segregated well within healthy tested family members. We found a high carrier rate in the village (1:15). CONCLUSIONS: We identified a novel and common LTBP3 gene pathogenic variant responsible for short stature, brachyolmia and amelogenesis imperfecta in Druze Arab patients.
Assuntos
Amelogênese Imperfeita , Osteocondrodisplasias , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Árabes , Mutação , Osteocondrodisplasias/genética , Proteínas de Ligação a TGF-beta Latente/genéticaRESUMO
OBJECTIVES: To clarify the potential risk factors and etiology of low back pain (LBP)-related disability, including structural changes of the spine (spinal scoliosis) and body composition components in a population with a high prevalence of LBP. METHODS: In this cross-sectional study, two self-reported validated questionnaires were used to collect back pain and disability data in an ethnically homogeneous family-based population sample (N = 1078). The scoliosis angle of trunk rotation was measured by a scoliometer on three spinal levels while the patient was bent forward. Body composition parameters, including relative to weight (WT), fat, relative skeletal muscle mass (SMM/WT), and total body water were determined by bioelectrical impedance analysis. Statistical analysis was conducted, accounting for the familial composition of the sample. RESULTS: The mixed multiple regression analyses with several LBP-related phenotypes as dependent variables consistently showed significant independent associations with scoliosis and SMM/WT, irrespective of other covariates. The odds ratios (OR)/95% CI for scoliosis ranged between 1.40 (1.19-1.64) and 1.51 (1.27-1.80), and from 0.61(0.51-0.72), to 0.71(0.58-0.87) for SMM/WT, depending on the LBP phenotype. The genetic components of the respective correlations between the LBP-phenotypes and scoliosis or SMM/WT were negligible. CONCLUSIONS: The associations between LBP-related conditions and postured scoliosis and SMM/WT were consistent and significant and therefore may serve as markers in predicting the development of LBP-related disability. We interpret the origin of these correlations as the evolutionary event due to the imperfect spine anatomy adaptation to a vertical posture resulting from a quick transition to bipedalism from a quadrupedal ancestor.
Assuntos
Dor Lombar , Escoliose , Antropologia , Estudos Transversais , Humanos , Dor Lombar/complicações , Dor Lombar/etiologia , Músculo Esquelético , Escoliose/complicações , Escoliose/etiologiaRESUMO
BACKGROUND: Dandy-Walker malformation features agenesis/hypoplasia of the cerebellar vermis, cystic dilatation of the fourth ventricle and enlargement of posterior fossa. Although Dandy-Walker malformation is relatively common and several genes were linked to the syndrome, the genetic cause in the majority of cases is unknown. OBJECTIVE: To identify the mutated gene responsible for Dandy-Walker malformation, kidney disease and bone marrow failure in four patients from two unrelated families. METHODS: Medical assessment, sonographic, MRI and pathological studies were used to define phenotype. Chromosomal microarray analysis and whole-exome sequence were performed to unravel the genotype. RESULTS: We report four subjects from two unrelated families with homozygous mutations in the Exocyst Complex Component 3-Like-2 gene (EXOC3L2).EXOC3L2 functions in trafficking of post-Golgi vesicles to the plasma membrane. In the first family a missense mutation in a highly conserved amino acid, p.Leu41Gln, was found in three fetuses; all had severe forms of Dandy-Walker malformation that was detectable by prenatal ultrasonography and confirmed by autopsy. In the second family, the affected child carried a nonsense mutation, p.Arg72*, and no detected protein. He had peritrigonal and cerebellar white matter abnormalities with enlargement of the ventricular trigones, developmental delay, pituitary hypoplasia, severe renal dysplasia and bone marrow failure. CONCLUSION: We propose that biallelic EXOC3L2 mutations lead to a novel syndrome that affects hindbrain development, kidney and possibly the bone marrow.
Assuntos
Alelos , Síndrome de Dandy-Walker/diagnóstico , Síndrome de Dandy-Walker/genética , Mutação , Fenótipo , Proteínas de Transporte Vesicular/genética , Biópsia , Encéfalo/patologia , Variações do Número de Cópias de DNA , Homozigoto , Humanos , Rim/metabolismo , Imageamento por Ressonância Magnética , Avaliação de Sintomas , Síndrome , Ultrassonografia , Proteínas de Transporte Vesicular/metabolismo , Sequenciamento do ExomaRESUMO
The development of low back pain (LBP) is often associated with obesity and sarcopenia. However, the mechanisms of this association remain unclear. To clarify this, we measured circulating levels of a selected panel of soluble factors, presumably involved in obesity and sarcopenia pathogenesis, and correlated them with several LBP-related characteristics, taking into account body composition and other relevant covariates. In the cross-sectional study of 1078 individuals, we collected data on self-reported LBP, body composition (including fat and skeletal muscle mass) assessed by the bioimpedance method and anthropometrically, and measured plasma levels of several cytokines by ELISA. In the statistical analysis, we took into account familial composition of the sample and possible putative genetic effects. We report that LBP-affected individuals were significantly older, with increased obesity and decreased skeletal mass, respectively, compared with the non-affected group. In univariate analyses, plasma concentrations of Growth and differentiation factor 15 (GDF-15), leptin, chemerin and follistatin were found significantly elevated in the LBP-affected groups (with or without sciatic pain) and were highly significantly (pâ¯<â¯0.001) associated with other LBP-related phenotypes, specifically, disease duration, disability and physician consults. However, after adjustment for one another, age, sex, body composition and putative genetic factors, the only associations between GDF-15 and LBP disability and medical consulting phenotypes, remained significant. In conclusion, we report for the first time, a significant and independent association between plasma GDF-15 concentrations and LBP-associated disability. Longitudinal studies are needed to determine whether GDF-15 could be a novel therapeutic target for prevention and/or treatment of LBP.
Assuntos
Avaliação da Deficiência , Fator 15 de Diferenciação de Crescimento/sangue , Dor Lombar/sangue , Adulto , Biomarcadores/sangue , Composição Corporal , Estudos de Casos e Controles , Feminino , Humanos , Funções Verossimilhança , Modelos Logísticos , Masculino , Fenótipo , SolubilidadeRESUMO
Primary deficiency of coenzyme Q10 (CoQ10 ubiquinone), is classified as a mitochondrial respiratory chain disorder with phenotypic variability. The clinical manifestation may involve one or multiple tissue with variable severity and presentation may range from infancy to late onset. ADCK3 gene mutations are responsible for the most frequent form of hereditary CoQ10 deficiency (Q10 deficiency-4 OMIM #612016) which is mainly associated with autosomal recessive spinocerebellar ataxia (ARCA2, SCAR9). Here we provide the clinical, biochemical and genetic investigation for unrelated three nuclear families presenting an autosomal form of Spino-Cerebellar Ataxia due to novel mutations in the ADCK3 gene. Using next generation sequence technology we identified a homozygous Gln343Ter mutation in one family with severe, early onset of the disease and compound heterozygous mutations of Gln343Ter and Ser608Phe in two other families with variable manifestations. Biochemical investigation in fibroblasts showed decreased activity of the CoQ dependent mitochondrial respiratory chain enzyme succinate cytochrome c reductase (complex II + III). Exogenous CoQ slightly improved enzymatic activity, ATP production and decreased oxygen free radicals in some of the patient's cells. Our results are presented in comparison to previously reported mutations and expanding the clinical, molecular and biochemical spectrum of ADCK3 related CoQ10 deficiencies.
Assuntos
Ataxia/genética , Fibroblastos/metabolismo , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia Cerebelar/genética , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Ubiquinona/genéticaRESUMO
Objective To examine the risk for abnormal chromosomal microarray analysis (CMA) results among fetuses with an apparently isolated pelvic kidney. Methods Data from all CMA analyses performed due to an isolated pelvic kidney reported to the Israeli Ministry of Health between January 2013 and September 2016 were retrospectively obtained. Risk estimation was performed comparing the rate of abnormal observed CMA findings to the general population risk, based on a systematic review encompassing 9272 cases and on local data of 5541 cases. Results Of 120 pregnancies with an isolated pelvic kidney, two gain-of-copy number variants suggesting microduplication syndromes were demonstrated (1.67%). In addition, three variants of unknown significance were detected (2.5%). Conclusion The risk for clinically significant CMA findings among pregnancies with an isolated single pelvic kidney was not significantly different compared to both control populations. The results of our study question the practice of routine CMA analysis in fetuses with an isolated pelvic kidney.
Assuntos
Aberrações Cromossômicas/estatística & dados numéricos , Rim , Análise em Microsséries/métodos , Pelve/diagnóstico por imagem , Anormalidades Urogenitais , Feminino , Feto/diagnóstico por imagem , Testes Genéticos/métodos , Testes Genéticos/estatística & dados numéricos , Humanos , Israel/epidemiologia , Cariotipagem/métodos , Rim/anormalidades , Rim/diagnóstico por imagem , Gravidez , Medição de Risco , Ultrassonografia Pré-Natal , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/epidemiologia , Anormalidades Urogenitais/genéticaRESUMO
Despite considerable progress in identifying causal genes for lipodystrophy syndromes, the molecular basis of some peculiar adipose tissue disorders remains obscure. In an Israeli-Arab pedigree with a novel autosomal recessive, multiple symmetric lipomatosis (MSL), partial lipodystrophy and myopathy, we conducted exome sequencing of two affected siblings to identify the disease-causing mutation. The 41-year-old female proband and her 36-year-old brother reported marked accumulation of subcutaneous fat in the face, neck, axillae, and trunk but loss of subcutaneous fat from the lower extremities and progressive distal symmetric myopathy during adulthood. They had increased serum creatine kinase levels, hypertriglyceridemia and low levels of high-density lipoprotein cholesterol. Exome sequencing identified a novel homozygous NC_000019.9:g.42906092C>A variant on chromosome 19, leading to a NM_005357.3:c.3103G>T nucleotide change in coding DNA and corresponding p.(Glu1035*) protein change in hormone sensitive lipase (LIPE) gene as the disease-causing variant. Sanger sequencing further confirmed the segregation of the mutation in the family. Hormone sensitive lipase is the predominant regulator of lipolysis from adipocytes, releasing free fatty acids from stored triglycerides. The homozygous null LIPE mutation could result in marked inhibition of lipolysis from some adipose tissue depots and thus may induce an extremely rare phenotype of MSL and partial lipodystrophy in adulthood associated with complications of insulin resistance, such as diabetes, hypertriglyceridemia and hepatic steatosis. © 2016 Wiley Periodicals, Inc.
Assuntos
Homozigoto , Lipodistrofia/genética , Lipomatose Simétrica Múltipla/genética , Doenças Musculares/genética , Mutação , Irmãos , Esterol Esterase/genética , Adulto , Idoso , Biomarcadores , Análise Mutacional de DNA , Exoma , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Lipodistrofia/diagnóstico , Lipodistrofia/metabolismo , Lipomatose Simétrica Múltipla/diagnóstico , Lipomatose Simétrica Múltipla/metabolismo , Masculino , Pessoa de Meia-Idade , Doenças Musculares/diagnóstico , Doenças Musculares/metabolismo , Linhagem , Fenótipo , Adulto JovemRESUMO
Obesity is a major public health concern, and complementary research strategies have been directed toward the identification of the underlying causative gene mutations that affect the normal pathways and networks that regulate energy balance. Here, we describe an autosomal-recessive morbid-obesity syndrome and identify the disease-causing gene defect. The average body mass index of affected family members was 48.7 (range = 36.7-61.0), and all had features of the metabolic syndrome. Homozygosity mapping localized the disease locus to a region in 3q29; we designated this region the morbid obesity 1 (MO1) locus. Sequence analysis identified a homozygous nonsense mutation in CEP19, the gene encoding the ciliary protein CEP19, in all affected family members. CEP19 is highly conserved in vertebrates and invertebrates, is expressed in multiple tissues, and localizes to the centrosome and primary cilia. Homozygous Cep19-knockout mice were morbidly obese, hyperphagic, glucose intolerant, and insulin resistant. Thus, loss of the ciliary protein CEP19 in humans and mice causes morbid obesity and defines a target for investigating the molecular pathogenesis of this disease and potential treatments for obesity and malnutrition.
Assuntos
Proteínas de Ciclo Celular/genética , Inativação Gênica , Obesidade Mórbida/genética , Adulto , Sequência de Aminoácidos , Animais , Clonagem Molecular , Consanguinidade , Sequência Conservada , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Marcação de Genes , Estudos de Associação Genética , Ligação Genética , Genótipo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Obesidade Mórbida/diagnóstico , Linhagem , Fenótipo , Mapeamento Físico do Cromossomo , Transdução de Sinais , Adulto JovemRESUMO
MOTIVATION: The use of dense single nucleotide polymorphism (SNP) data in genetic linkage analysis of large pedigrees is impeded by significant technical, methodological and computational challenges. Here we describe Superlink-Online SNP, a new powerful online system that streamlines the linkage analysis of SNP data. It features a fully integrated flexible processing workflow comprising both well-known and novel data analysis tools, including SNP clustering, erroneous data filtering, exact and approximate LOD calculations and maximum-likelihood haplotyping. The system draws its power from thousands of CPUs, performing data analysis tasks orders of magnitude faster than a single computer. By providing an intuitive interface to sophisticated state-of-the-art analysis tools coupled with high computing capacity, Superlink-Online SNP helps geneticists unleash the potential of SNP data for detecting disease genes. RESULTS: Computations performed by Superlink-Online SNP are automatically parallelized using novel paradigms, and executed on unlimited number of private or public CPUs. One novel service is large-scale approximate Markov Chain-Monte Carlo (MCMC) analysis. The accuracy of the results is reliably estimated by running the same computation on multiple CPUs and evaluating the Gelman-Rubin Score to set aside unreliable results. Another service within the workflow is a novel parallelized exact algorithm for inferring maximum-likelihood haplotyping. The reported system enables genetic analyses that were previously infeasible. We demonstrate the system capabilities through a study of a large complex pedigree affected with metabolic syndrome. AVAILABILITY: Superlink-Online SNP is freely available for researchers at http://cbl-hap.cs.technion.ac.il/superlink-snp. The system source code can also be downloaded from the system website. CONTACT: omerw@cs.technion.ac.il SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Ligação Genética , Linhagem , Polimorfismo de Nucleotídeo Único , Software , Algoritmos , Análise por Conglomerados , Haplótipos , Humanos , Cadeias de Markov , Método de Monte CarloRESUMO
The associations of cardiovascular disease (CVD) with comorbidities and biochemical and body composition measurements are repeatedly described but have not been studied simultaneously. In the present cross-sectional study, information on CVD and comorbidities [type 2 diabetes mellitus (T2DM), hypertension (HTN), and hyperlipidemia (HDL)], body composition, levels of soluble markers, and other measures were collected from 1079 individuals. When we examined the association of each comorbidity and CVD, controlling for other comorbidities, we observed a clear pattern of the comorbidity-related specific associations with tested covariates. For example, T2DM was significantly associated with GDF-15 levels and the leptin/adiponectin (L/A) ratio independently of two other comorbidities; HTN, similarly, was independently associated with extracellular water (ECW) levels, L/A ratio, and age; and HDL was independently related to age only. CVD showed very strong independent associations with each of the comorbidities, being associated most strongly with HTN (OR = 10.89, 6.46-18.38) but also with HDL (2.49, 1.43-4.33) and T2DM (1.93, 1.12-3.33). An additive Bayesian network analysis suggests that all three comorbidities, particularly HTN, GDF-15 levels, and ECW content, likely have a main role in the risk of CVD development. Other factors, L/A ratio, lymphocyte count, and the systemic inflammation response index, are likely indirectly related to CVD, acting through the comorbidities and ECW.
RESUMO
Importance: National implementation of rapid trio genome sequencing (rtGS) in a clinical acute setting is essential to ensure advanced and equitable care for ill neonates. Objective: To evaluate the feasibility, diagnostic efficacy, and clinical utility of rtGS in neonatal intensive care units (NICUs) throughout Israel. Design, Setting, and Participants: This prospective, public health care-based, multicenter cohort study was conducted from October 2021 to December 2022 with the Community Genetics Department of the Israeli Ministry of Health and all Israeli medical genetics institutes (n = 18) and NICUs (n = 25). Critically ill neonates suspected of having a genetic etiology were offered rtGS. All sequencing, analysis, and interpretation of data were performed in a central genomics center at Tel-Aviv Sourasky Medical Center. Rapid results were expected within 10 days. A secondary analysis report, issued within 60 days, focused mainly on cases with negative rapid results and actionable secondary findings. Pathogenic, likely pathogenic, and highly suspected variants of unknown significance (VUS) were reported. Main Outcomes and Measures: Diagnostic rate, including highly suspected disease-causing VUS, and turnaround time for rapid results. Clinical utility was assessed via questionnaires circulated to treating neonatologists. Results: A total of 130 neonates across Israel (70 [54%] male; 60 [46%] female) met inclusion criteria and were recruited. Mean (SD) age at enrollment was 12 (13) days. Mean (SD) turnaround time for rapid report was 7 (3) days. Diagnostic efficacy was 50% (65 of 130) for disease-causing variants, 11% (14 of 130) for VUS suspected to be causative, and 1 novel gene candidate (1%). Disease-causing variants included 12 chromosomal and 52 monogenic disorders as well as 1 neonate with uniparental disomy. Overall, the response rate for clinical utility questionnaires was 82% (107 of 130). Among respondents, genomic testing led to a change in medical management for 24 neonates (22%). Results led to immediate precision medicine for 6 of 65 diagnosed infants (9%), an additional 2 (3%) received palliative care, and 2 (3%) were transferred to nursing homes. Conclusions and Relevance: In this national cohort study, rtGS in critically ill neonates was feasible and diagnostically beneficial in a public health care setting. This study is a prerequisite for implementation of rtGS for ill neonates into routine care and may aid in design of similar studies in other public health care systems.
Assuntos
Estado Terminal , Terapia Intensiva Neonatal , Lactente , Recém-Nascido , Feminino , Masculino , Humanos , Estudos de Coortes , Estudos Prospectivos , Unidades de Terapia Intensiva NeonatalRESUMO
Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.
RESUMO
We characterized an autosomal-recessive syndrome of focal epilepsy, dysarthria, and mild to moderate intellectual disability in a consanguineous Arab-Israeli family associated with subtle cortical thickening. We used multipoint linkage analysis to map the causative mutation to a 3.2 Mb interval within 16p13.3 with a LOD score of 3.86. The linked interval contained 160 genes, many of which were considered to be plausible candidates to harbor the disease-causing mutation. To interrogate the interval in an efficient and unbiased manner, we used targeted sequence enrichment and massively parallel sequencing. By prioritizing unique variants that affected protein translation, a pathogenic mutation was identified in TBC1D24 (p.F251L), a gene of unknown function. It is a member of a large gene family encoding TBC domain proteins with predicted function as Rab GTPase activators. We show that TBC1D24 is expressed early in mouse brain and that TBC1D24 protein is a potent modulator of primary axonal arborization and specification in neuronal cells, consistent with the phenotypic abnormality described.
Assuntos
Proteínas de Transporte/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Mutação/genética , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Proteínas de Transporte/química , Forma Celular , Mapeamento Cromossômico , Feminino , Proteínas Ativadoras de GTPase/química , Humanos , Lactente , Masculino , Proteínas de Membrana , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Neurônios/patologia , Fases de Leitura Aberta/genética , Linhagem , SíndromeRESUMO
Knee osteoarthritis (KOA) is one of the most common progressive, age-dependent chronic degenerative joint diseases. KOA often develops as a result of a gradual articular cartilage loss caused by its wear and tear. Numerous studies suggest that the degradation of the knee joint involves inflammatory components. This process is also associated with body composition, particularly being overweight and muscle mass loss. The present study aimed to search for novel circulating KOA inflammatory biomarkers, taking into account body composition characteristics. To this aim, we recruited 98 patients diagnosed and radiologically confirmed with KOA and 519 healthy controls from the Arab community in Israel. A panel of soluble molecules, related to inflammatory, metabolic, and musculoskeletal disorders, was measured by ELISA in plasma samples, while several body composition parameters were assessed with bioimpedance analysis. Statistical analysis, including multivariable logistic regression, revealed a number of the factors significantly associated with KOA, independently of age and sex. The most significant independent associations [OR (95% CI)] were fat body mass/body weight index-1.56 (1.20-2.02), systemic immune-inflammation index-4.03 (2.23-7.27), circulating vaspin levels-1.39 (1.15-1.68), follistatin/FSTL1 ratio-1.32 (1.02-1.70), and activin A/FSTL1 ratio-1.33 (1.01-1.75). Further clinical studies are warranted to confirm the relevance of these KOA-associated biological factors. Hereafter, they could serve as reliable biomarkers for KOA in the general human population.
Assuntos
Proteínas Relacionadas à Folistatina , Osteoartrite do Joelho , Humanos , Articulação do Joelho , Composição Corporal , BiomarcadoresRESUMO
In this cross-sectional study, we observed a strong, age-independent association of circulating interleukin-34 (IL-34) levels with osteoporosis. PURPOSE: The reported capacity of IL-34 to induce and enhance osteoclastogenesis suggests its potential involvement in the pathogenesis of osteoporosis. Our study aimed to evaluate whether there is an association between IL-34 expression and osteoporosis. METHODS: We enrolled 30 women with osteoporosis and 230 age-matched non-osteoporotic women as a control group. Osteoporosis diagnosis was based on dual-energy X-ray absorptiometry (DXA) of the lumbar spine and femoral neck. Body composition parameters were assessed by the bioimpedance method. Plasma IL-34 levels were measured by ELISA. RESULTS: In comparison with the control group, the mean plasma IL-34 levels were significantly higher in osteoporotic women (164.61 ± 36.40 pg/ml vs. 665.43 ± 253.67 pg/ml, p = 0.0002), whereas basal metabolic rate (BMR) was significantly lower (1422.03 ± 6.80 kcal vs. 1339.39 ± 17.52 kcal, p = 0.00007). Both variables remained statistically significant after adjustment for age (p < 0.001). We did not observe correlations between plasma IL-34 levels and body composition parameters in osteoporotic and control groups. Multiple logistic regression analysis with osteoporosis status as a dependent variable clearly showed that age, BMR and IL-34 levels were independently and significantly associated with osteoporosis. The calculated odds ratios (OR) were 1.66 (95% CI = 1.16-2.38) for IL-34 levels and 0.22 (95% CI = 0.07-0.65) for BMR. CONCLUSION: The significant (fourfold) elevation of IL-34 plasma levels in osteoporosis patients suggests that circulating IL-34 could be used as a biomarker for osteoporosis.
Assuntos
Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Densidade Óssea , Estudos Transversais , Interleucinas , Vértebras Lombares/metabolismoRESUMO
Glucose-6-phosphate dehydrogenase (G6PD) deficiency and polymorphism in uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) were associated with significant neonatal hyperbilirubinemia (NHB) and increased risk for kernicterus. However, quantitative screening tests for G6PD enzyme activity proved unsatisfactory in estimating the risk for significant NHB, especially in heterozygous females that could present phenotype overlap between normal homozygotes, heterozygotes, and deficient homozygotes, resulting in a continuum of intermediate G6PD activity. OBJECTIVE: To examine the association of genotype and phenotype in newborns with decreased G6PD activity and its relation to NHB. STUDY DESIGN: Quantitative G6PD enzyme activities were measured on umbilical cord blood samples. After accepting parental consent, samples were analyzed for G6PD mutations and UGT1A1 gene polymorphisms (number of TA repeats in the UGT1A1 promoter). The associations to quantitative G6PD activity and bilirubin levels were assessed. RESULTS: 28 females and 27 males were studied. The Mediterranean mutation (NM_001360016.2(G6PD): c.563C>T (p.Ser188Phe)) was responsible for most cases of G6PD deficiency (20 hemizygous males, 3 homozygous and 16 heterozygous females). The association between this mutation, decreased G6PD activity and higher bilirubin levels was confirmed. Heterozygosity to 6/7 TA repeats in the UGT1A1 promoter was associated with increased NHB, especially in female newborns with G6PD deficiency. However, it seems that the interaction between G6PD deficiency, UGT1A1 promoter polymorphism, and NHB is more complex, possibly involving other genetic interactions, not yet described. Despite genotyping females with G6PD deficiency, the overlap between the upper range of borderline and the lower range of normal G6PD activity could not be resolved. CONCLUSIONS: The results of this study highlight the possibility for future implementation of molecular genetic screening to identify infants at risk for significant NHB, especially UGT1A1 polymorphism in heterozygous females with borderline G6PD deficiency. However, further studies are needed before such screening could be applicable to daily practice.
RESUMO
OBJECTIVE: To compare the performance of CellDetect, a new biomarker with urine cytology and UroVysiontechnology for bladder cancer detection. PATIENTS AND METHODS: We performed an IRB approved prospective, blinded single center study in patients on routine surveillance for nonmuscle invasive bladder cancer and those scheduled for transurethral resection of bladder tumor or radical cystectomy. Patients with bladder catheters, neobladder, ileal conduit, urinary stones, or those with upper tract carcinoma were excluded from the study. Voided urine sample was collected from the participants and each sample was divided into three equal aliquots (CellDetect, Urine cytology and Urovysion). Pathology of the operative specimen was considered the gold standard to which the three markers were compared. RESULTS: The study group included 93 patients with median age was 68 years (range: 34-92 years) with male to female ratio of 12:1. Pathologic evaluation revealed malignancy in 43 cases (46%) of whom 81% had previous history of urothelial bladder cancer. Among all studied markers CellDetect exhibited the best performance followed by urine cytology and U-FISH with diagnostic odds ratio of 4.33, 3.85, and 2.5 respectively. The overall sensitivity, specificity, negative predictive value, and positive predictive value for this test were 84%, 80%, 88%, and 74% respectively. The advantage of this new biomarker was observed both in high grade and low-grade cases. CONCLUSIONS: This study demonstrates the advantage of CellDetect as a urine-based assay to detect urothelial bladder cancer over urine cytology and U-FISH test. The high performance was maintained across all cancer grades and stages without compromising the assay specificity. Additional studies are required to test if it can be a noninvasive alternative to cystoscopy.