Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain Behav Immun ; 119: 724-733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663776

RESUMO

Elucidating mechanisms by which early-life adversity (ELA) contributes to increased disease risk is important for mitigating adverse health outcomes. Prior work has found differences in immune cell gene expression related to inflammation and mitochondrial activity. Using a within-person between-group experimental design, we investigated differences in gene expression clusters across acute psychosocial stress and no-stress conditions. Participants were young adults (N = 29, aged 18 - 25 years, 62 % female, 47 % with a history of ELA). Gene expression was assessed in peripheral blood mononuclear cells collected at 8 blood draws spanning two 5-hour sessions (stress vs. no-stress) separated by a week, 4 across each session (number of observations = 221). We applied two unsupervised gene clustering methods - latent profile analysis (LPA) and weighted gene co-expression analysis (WGCNA) - to cluster genes with similar expression patterns across participants. LPA identified 11 clusters, 7 of which were significantly associated with ELA-status. WGCNA identified 5 clusters, 3 of which were significantly associated with ELA-status. LPA- and WGCNA-identified clusters were correlated, and all clusters were highly preserved across sessions and time. There was no significant effect of acute stress on cluster gene expression, but there was a significant effect of time, and significant differences by ELA-status. ELA-associated clusters related to RNA splicing/processing, inflammation, leukocyte differentiation and division, and mitochondrial activity were differentially expressed across time: ELA-exposed individuals showed decreased expression of these clusters at 90-minutes while controls showed increased expression. Our findings replicate previous work in this area and highlight additional mechanisms by which ELA may contribute to disease risk.


Assuntos
Experiências Adversas da Infância , Leucócitos Mononucleares , Estresse Psicológico , Humanos , Feminino , Estresse Psicológico/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/imunologia , Masculino , Adulto , Adulto Jovem , Adolescente , Leucócitos Mononucleares/metabolismo , Análise por Conglomerados , Expressão Gênica/genética , Transcriptoma , Inflamação/genética , Inflamação/metabolismo
2.
Brain Behav Immun ; 115: 80-88, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797778

RESUMO

Affective reactivity to stress is a person-level measurement of how well an individual copes with daily stressors. A common method of measuring affective reactivity entails the estimation of within-person differences of either positive or negative affect on days with and without stressors present. Individuals more reactive to common stressors, as evidenced by affective reactivity measurements, have been shown to have increased levels of circulating pro-inflammatory markers. While affective reactivity has previously been associated with inflammatory markers, the upstream mechanistic links underlying these associations are unknown. Using data from the Midlife in the United States (MIDUS) Refresher study (N = 195; 52% female; 84% white), we quantified daily stress processes over 10 days and determined individuals' positive and negative affective reactivities to stressors. We then examined affective reactivity association with peripheral blood mononuclear cell (PBMC) gene expression of the immune-related conserved transcriptional response to adversity. Results indicated that individuals with a greater decrease in positive affect to daily stressors exhibited heightened PBMC JUNB expression after Bonferroni corrections (p-adjusted < 0.05). JUNB encodes a protein that acts as a transcription factor which regulates many aspects of the immune response, including inflammation and cell proliferation. Due to its critical role in the activation of macrophages and maintenance of CD4+ T-cells during inflammation, JUNB may serve as a potential upstream mechanistic target for future studies of the connection between affective reactivity and inflammatory processes. Overall, our findings provide evidence that affective reactivity to stress is associated with levels of immune cell gene expression.


Assuntos
Leucócitos Mononucleares , Estresse Psicológico , Humanos , Feminino , Estados Unidos , Masculino , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Inflamação/genética , Individualidade , Expressão Gênica/genética , Afeto/fisiologia
3.
PLoS One ; 19(2): e0290918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38386656

RESUMO

Telomere length (TL) is an important biomarker of cellular aging, yet its links with health outcomes may be complicated by use of different tissues. We evaluated within- and between-individual variability in TL and quality metrics of DNA across five tissues using a cross-sectional dataset ranging from 8 to 70 years (N = 197). DNA was extracted from all tissue cells using the Gentra Puregene DNA Extraction Kit. Absolute TL (aTL) in kilobase pairs was measured in buccal epithelial cells, saliva, dried blood spots (DBS), buffy coat, and peripheral blood mononuclear cells (PBMCs) using qPCR. aTL significantly shortened with age for all tissues except saliva and buffy coat, although buffy coat was available for a restricted age range (8 to 15 years). aTL did not significantly differ across blood-based tissues (DBS, buffy coat, PBMC), which had significantly longer aTL than buccal cells and saliva. Additionally, aTL was significantly correlated for the majority of tissue pairs, with partial Spearman's correlations controlling for age and sex ranging from ⍴ = 0.18 to 0.51. We also measured quality metrics of DNA including integrity, purity, and quantity of extracted DNA from all tissues and explored whether controlling for DNA metrics improved predictions of aTL. We found significant tissue variation: DNA from blood-based tissues had high DNA integrity, more acceptable A260/280 and A260/230 values, and greater extracted DNA concentrations compared to buccal cells and saliva. Longer aTL was associated with lower DNA integrity, higher extracted DNA concentrations, and higher A260/230, particularly for saliva. Model comparisons suggested that incorporation of quality DNA metrics improves models of TL, although relevant metrics vary by tissue. These findings highlight the merits of using blood-based tissues and suggest that incorporation of quality DNA metrics as control variables in population-based studies can improve TL predictions, especially for more variable tissues like buccal and saliva.


Assuntos
Leucócitos Mononucleares , Mucosa Bucal , Humanos , Criança , Adolescente , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Telômero/genética , DNA/genética , DNA/metabolismo
4.
bioRxiv ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39071385

RESUMO

Epigenetic clocks are a common group of tools used to measure biological aging - the progressive deterioration of cells, tissues and organs. Epigenetic clocks have been trained almost exclusively using blood-based tissues but there is growing interest in estimating epigenetic age using less-invasive oral-based tissues (i.e., buccal or saliva) in both research and commercial settings. However, differentiated cell types across body tissues exhibit unique DNA methylation landscapes and age-related alterations to the DNA methylome. Applying epigenetic clocks derived from blood-based tissues to estimate epigenetic age of oral-based tissues may introduce biases. We tested the within-person comparability of common epigenetic clocks across five tissue types: buccal epithelial, saliva, dry blood spots, buffy coat (i.e., leukocytes), and peripheral blood mononuclear cells. We tested 284 distinct tissue samples from 83 individuals aged 9-70 years. Overall, there were significant within-person differences in epigenetic clock estimates from oral-based versus blood-based tissues, with average differences of almost 30 years observed in some age clocks. In addition, most epigenetic clock estimates of blood-based tissues exhibited low correlation with estimates from oral-based tissues despite controlling for cellular proportions and other technical factors. Our findings indicate that application of blood-derived epigenetic clocks in oral-based tissues may not yield comparable estimates of epigenetic age, highlighting the need for careful consideration of tissue type when estimating epigenetic age.

5.
Aging Cell ; 23(6): e14149, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38504468

RESUMO

Caloric restriction (CR) modifies lifespan and aging biology in animal models. The Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE™) 2 trial tested translation of these findings to humans. CALERIE™ randomized healthy, nonobese men and premenopausal women (age 21-50y; BMI 22.0-27.9 kg/m2), to 25% CR or ad-libitum (AL) control (2:1) for 2 years. Prior analyses of CALERIE™ participants' blood chemistries, immunology, and epigenetic data suggest the 2-year CR intervention slowed biological aging. Here, we extend these analyses to test effects of CR on telomere length (TL) attrition. TL was quantified in blood samples collected at baseline, 12-, and 24-months by quantitative PCR (absolute TL; aTL) and a published DNA-methylation algorithm (DNAmTL). Intent-to-treat analysis found no significant differences in TL attrition across the first year, although there were trends toward increased attrition in the CR group for both aTL and DNAmTL measurements. When accounting for adherence heterogeneity with an Effect-of-Treatment-on-the-Treated analysis, greater CR dose was associated with increased DNAmTL attrition during the baseline to 12-month weight-loss period. By contrast, both CR group status and increased CR were associated with reduced aTL attrition over the month 12 to month 24 weight maintenance period. No differences were observed when considering TL change across the study duration from baseline to 24-months, leaving it unclear whether CR-related effects reflect long-term detriments to telomere fidelity, a hormesis-like adaptation to decreased energy availability, or measurement error and insufficient statistical power. Unraveling these trends will be a focus of future CALERIE™ analyses and trials.


Assuntos
Restrição Calórica , Telômero , Humanos , Restrição Calórica/métodos , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Telômero/metabolismo , Adulto Jovem , Homeostase do Telômero , Envelhecimento/genética , Metilação de DNA
6.
Nat Commun ; 15(1): 3572, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670986

RESUMO

A regulated stress response is essential for healthy child growth and development trajectories. We conducted a cluster-randomized trial in rural Bangladesh (funded by the Bill & Melinda Gates Foundation, ClinicalTrials.gov NCT01590095) to assess the effects of an integrated nutritional, water, sanitation, and handwashing intervention on child health. We previously reported on the primary outcomes of the trial, linear growth and caregiver-reported diarrhea. Here, we assessed additional prespecified outcomes: physiological stress response, oxidative stress, and DNA methylation (N = 759, ages 1-2 years). Eight neighboring pregnant women were grouped into a study cluster. Eight geographically adjacent clusters were block-randomized into the control or the combined nutrition, water, sanitation, and handwashing (N + WSH) intervention group (receiving nutritional counseling and lipid-based nutrient supplements, chlorinated drinking water, upgraded sanitation, and handwashing with soap). Participants and data collectors were not masked, but analyses were masked. There were 358 children (68 clusters) in the control group and 401 children (63 clusters) in the intervention group. We measured four F2-isoprostanes isomers (iPF(2α)-III; 2,3-dinor-iPF(2α)-III; iPF(2α)-VI; 8,12-iso-iPF(2α)-VI), salivary alpha-amylase and cortisol, and methylation of the glucocorticoid receptor (NR3C1) exon 1F promoter including the NGFI-A binding site. Compared with control, the N + WSH group had lower concentrations of F2-isoprostanes isomers (differences ranging from -0.16 to -0.19 log ng/mg of creatinine, P < 0.01), elevated post-stressor cortisol (0.24 log µg/dl; P < 0.01), higher cortisol residualized gain scores (0.06 µg/dl; P = 0.023), and decreased methylation of the NGFI-A binding site (-0.04; P = 0.037). The N + WSH intervention enhanced adaptive responses of the physiological stress system in early childhood.


Assuntos
Metilação de DNA , Epigênese Genética , Desinfecção das Mãos , Saneamento , Humanos , Feminino , Bangladesh , Masculino , Lactente , Pré-Escolar , Gravidez , Estresse Oxidativo , Estresse Fisiológico , População Rural , Adulto , Diarreia/prevenção & controle , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética
7.
Psychoneuroendocrinology ; 164: 107023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522372

RESUMO

BACKGROUND: Hundreds of millions of children in low- and middle-income countries are exposed to chronic stressors, such as poverty, poor sanitation and hygiene, and sub-optimal nutrition. These stressors can have physiological consequences for children and may ultimately have detrimental effects on child development. This study explores associations between biological measures of chronic stress in early life and developmental outcomes in a large cohort of young children living in rural Bangladesh. METHODS: We assessed physiologic measures of stress in the first two years of life using measures of the hypothalamic-pituitary-adrenal (HPA) axis (salivary cortisol and glucocorticoid receptor gene methylation), the sympathetic-adrenal-medullary (SAM) system (salivary alpha-amylase, heart rate, and blood pressure), and oxidative status (F2-isoprostanes). We assessed child development in the first two years of life with the MacArthur-Bates Communicative Development Inventories (CDI), the WHO gross motor milestones, and the Extended Ages and Stages Questionnaire (EASQ). We compared development outcomes of children at the 75th and 25th percentiles of stress biomarker distributions while adjusting for potential confounders using generalized additive models, which are statistical models where the outcome is predicted by a potentially non-linear function of predictor variables. RESULTS: We analyzed data from 684 children (49% female) at both 14 and 28 months of age; we included an additional 765 children at 28 months of age. We detected a significant relationship between HPA axis activity and child development, where increased HPA axis activity was associated with poor development outcomes. Specifically, we found that cortisol reactivity (coefficient -0.15, 95% CI (-0.29, -0.01)) and post-stressor levels (coefficient -0.12, 95% CI (-0.24, -0.01)) were associated with CDI comprehension score, post-stressor cortisol was associated with combined EASQ score (coefficient -0.22, 95% CI (-0.41, -0.04), and overall glucocorticoid receptor methylation was associated with CDI expression score (coefficient -0.09, 95% CI (-0.17, -0.01)). We did not detect a significant relationship between SAM activity or oxidative status and child development. CONCLUSIONS: Our observations reveal associations between the physiological evidence of stress in the HPA axis with developmental status in early childhood. These findings add to the existing evidence exploring the developmental consequences of early life stress.


Assuntos
Desenvolvimento Infantil , Hidrocortisona , Criança , Humanos , Pré-Escolar , Feminino , Masculino , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Glucocorticoides/metabolismo , Bangladesh , Sistema Hipófise-Suprarrenal/metabolismo , Biomarcadores/metabolismo , Saliva/metabolismo , Estresse Psicológico/metabolismo
8.
Child Dev Perspect ; 17(3-4): 149-156, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38706692

RESUMO

In this article, we suggest that aging and development are two sides of the same coin, and that developing a comprehensive understanding of health and disease risk requires examining age-related processes occurring throughout the earliest years of life. Compared to other periods in life, during this early period of acute vulnerability, when children's biological and regulatory systems are developing, biological aging occurs most rapidly. We review theory and empirical research suggesting that processes of development and aging are intricately linked, and that early adversity may program biological parameters for accelerated aging and disease risk early in life, even though clinical signs of age-related disease onset may not be evident until many years later. Following from this, we make the case for widespread incorporation of biological aging constructs into child development research.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa