Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 57(4): 2269-2277, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29420026

RESUMO

The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal, and cubic), respectively. All samples undergo irreversible high-pressure phase transformations, but with different onset pressures depending on the initial structure. While each individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressure range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ∼21 GPa, followed by Im3̅m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (∼55 GPa) reached, indicating kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high-pressure cubic X-type phase (Im3̅m) is confirmed using high-resolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.

2.
J Am Chem Soc ; 139(30): 10395-10402, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28683545

RESUMO

A wide variety of compositions adopt the isometric spinel structure (AB2O4), in which the atomic-scale ordering is conventionally described according to only three structural degrees of freedom. One, the inversion parameter, is traditionally defined as the degree of cation exchange between the A- and B-sites. This exchange, a measure of intrinsic disorder, is fundamental to understanding the variation in the physical properties of different spinel compositions. Based on neutron total scattering experiments, we have determined that the local structure of Mg1-xNixAl2O4 spinel cannot be understood as simply being due to cation disorder. Rather, cation inversion creates a local tetragonal symmetry that extends over sub-nanometer domains. Consequently, the simple spinel structure is more complicated than previously thought, as more than three parameters are needed to fully describe the structure. This new insight provides a framework by which the behavior of spinel can be more accurately modeled under the extreme environments important for many geophysics and energy-related applications, including prediction of deep seismic activity and immobilization of nuclear waste in oxides.

3.
Nat Mater ; 15(5): 507-11, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26928636

RESUMO

There has been an increased focus on understanding the energetics of structures with unconventional ordering (for example, correlated disorder that is heterogeneous across different length scales). In particular, compounds with the isometric pyrochlore structure, A2B2O7, can adopt a disordered, isometric fluorite-type structure, (A, B)4O7, under extreme conditions. Despite the importance of the disordering process there exists only a limited understanding of the role of local ordering on the energy landscape. We have used neutron total scattering to show that disordered fluorite (induced intrinsically by composition/stoichiometry or at far-from-equilibrium conditions produced by high-energy radiation) consists of a local orthorhombic structural unit that is repeated by a pseudo-translational symmetry, such that orthorhombic and isometric arrays coexist at different length scales. We also show that inversion in isometric spinel occurs by a similar process. This insight provides a new basis for understanding order-to-disorder transformations important for applications such as plutonium immobilization, fast ion conduction, and thermal barrier coatings.


Assuntos
Modelos Químicos , Técnicas de Sonda Molecular , Difração de Nêutrons/métodos , Nióbio/química , Óxidos/química , Estereoisomerismo
4.
Inorg Chem ; 55(7): 3541-6, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26974702

RESUMO

Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western U.S.A. The drums contained an X-ray amorphous reactive form of uranium oxide that may have contributed to the pressurization. Heating hydrated uranyl peroxides produced during in situ mining can produce an amorphous compound, as shown by X-ray powder diffraction of material from impacted drums. Subsequently, studtite, [(UO2)(O2)(H2O)2](H2O)2, was heated in the laboratory. Its thermal decomposition produced a hygroscopic anhydrous uranyl peroxide that reacts with water to release O2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U2O7 conformer consists of two bent (UO2)(2+) uranyl ions bridged by a peroxide group bidentate and parallel to each uranyl ion, and a µ2-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model, as do (1)H- and (17)O-nuclear magnetic resonance spectra. The reactivity of U2O7 in water and with water in air is higher than that of other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle.

5.
Br J Radiol ; 93(1107): 20190359, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31692372

RESUMO

Proton radiation therapy has been used clinically since 1952, and major advancements in the last 10 years have helped establish protons as a major clinical modality in the cancer-fighting arsenal. Technologies will always evolve, but enough major breakthroughs have been accomplished over the past 10 years to allow for a major revolution in proton therapy. This paper summarizes the major technology advancements with respect to beam delivery that are now ready for mass implementation in the proton therapy space and encourages vendors to bring these to market to benefit the cancer population worldwide. We state why these technologies are essential and ready for implementation, and we discuss how future systems should be designed to accommodate their required features.


Assuntos
Previsões , Marketing de Serviços de Saúde , Neoplasias/radioterapia , Posicionamento do Paciente , Terapia com Prótons/métodos , Terapia com Prótons/tendências , Radioterapia de Intensidade Modulada/métodos , Absorção de Radiação , Calibragem , Humanos , Neoplasias/diagnóstico por imagem , Movimentos dos Órgãos , Radioterapia Guiada por Imagem/métodos , Respiração , Fatores de Tempo , Incerteza
6.
Nat Commun ; 9(1): 86, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311661

RESUMO

Many-body effects produce deviations from the predictions of conventional band theory in quantum materials, leading to strongly correlated phases with insulating or bad metallic behavior. One example is the rare-earth nickelates RNiO3, which undergo metal-to-insulator transitions (MITs) whose origin is debated. Here, we combine total neutron scattering and broadband dielectric spectroscopy experiments to study and compare carrier dynamics and local crystal structure in LaNiO3 and NdNiO3. We find that the local crystal structure of both materials is distorted in the metallic phase, with slow, thermally activated carrier dynamics at high temperature. We further observe a sharp change in conductivity across the MIT in NdNiO3, accompanied by slight differences in the carrier hopping time. These results suggest that changes in carrier concentration drive the MIT through a polaronic mechanism, where the (bi)polaron liquid freezes into the insulating phase across the MIT temperature.

7.
Sci Rep ; 6: 38772, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941870

RESUMO

Fluorite-structured oxides find widespread use for applications spanning nuclear energy and waste containment, energy conversion, and sensing. In such applications the host tetravalent cation is often partially substituted by trivalent cations, with an associated formation of charge-compensating oxygen vacancies. The stability and properties of such materials are known to be influenced strongly by chemical ordering of the cations and vacancies, and the nature of such ordering and associated energetics are thus of considerable interest. Here we employ density-functional theory (DFT) calculations to study the structure and energetics of cation and oxygen-vacancy ordering in Ho2Zr2O7. In a recent neutron total scattering study, solid solutions in this system were reported to feature local chemical ordering based on the fluorite-derivative weberite structure. The calculations show a preferred chemical ordering qualitatively consistent with these findings, and yield values for the ordering energy of 9.5 kJ/mol-cation. Similar DFT calculations are applied to additional RE2Th2O7 fluorite compounds, spanning a range of values for the ratio of the tetravalent and trivalent (RE) cation radii. The results demonstrate that weberite-type order becomes destabilized with increasing values of this size ratio, consistent with an increasing energetic preference for the tetravalent cations to have higher oxygen coordination.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa