Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 81(5): 1154-1161, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29676912

RESUMO

The in vitro antidiabetic and antihyperlipidemic activities of an alcoholic extract of Trigonella stellata were evaluated in terms of the activation of PPARα and PPARγ in human hepatoma (HepG2) cells. The extract was investigated phytochemically, aiming at the isolation of the most active compounds to be used as a platform for drug discovery. Three new isoflavans, (3 S,4 R)-4,2',4'-trihydroxy)-7-methoxyisoflavan (1), (3 R,4 S)-4,2',4'-trihydroxy-7-methoxy-4'- O-ß-d-glucopyranosylisoflavan (2), and (2 S,3 R,4 R)-4,2',4'-trihydroxy-2,7-dimethoxyisoflavan (3), were isolated and characterized along with the five known compounds p-hydroxybenzoic acid (4), 7,4'-dihydroxyflavone (5), dihydromelilotoside (6), quercetin-3,7- O-α-l-dirhamnoside (7), and soyasaponin I (8). The structures of 1-3 were elucidated using various spectroscopic techniques including HRESIMS and 1D and 2D NMR. The absolute stereochemistry of the new isoflavans (1-3) was determined using both experimental and calculated electronic circular dichroism as well as DP4 calculations. The isolated compounds were tested for their PPARα and PPARγ activation effects in HepG2 cells.


Assuntos
Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Trigonella/química , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética/métodos , Quercetina/química , Quercetina/farmacologia
2.
J Ethnopharmacol ; 334: 118583, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013541

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver and breast cancers are the most dominant cancer types with high occurrence rates. Artichoke (Cynara scolymus L.) has been reputed for its traditional use in alleviating many liver and gallbladder ailments beside its anticancer activity against various types of cancer cells. AIM OF THE STUDY: To demonstrate detailed chemical matrices of the different plant parts and evaluate their cytotoxic activities aiming to unveil the relationship between these activities and the intrinsic metabolites using metabolomic studies, in-vitro experiments and network pharmacology. MATERIALS AND METHODS: Chemical profiling of extracts from the different plant parts (stems, leaves, bracts and receptacles) was performed using HPLC/QqQ/MS followed by unsupervised chemometric studies. In-vitro cytotoxic potentials of the extracts were evaluated on breast and liver cancer cell line then an OPLS study using linear regression was conducted. Consequently, a network pharmacology analysis on the most bioactive plant organ was applied. RESULTS: Unsupervised chemometric analysis revealed that kaempferol-3-O-α-L-rhamnopyranoside-7-O-ß-D-galacturonopyranoside, chrysoeriol-7-rutinoside and 1-caffeoylquinic acid were responsible for the segregation of the bract (CSB) segregated from the rest of the plant organs. Interestingly, CSB extract possessed the highest potential in-vitro cytotoxic activity against both liver and breast cancer cells (IC50 = 1.65 and 1.77 µg/mL). As expected, the aforementioned biomarkers were observed to be the discriminatory cytotoxic metabolites in the constructed supervised chemometric model. Network pharmacology analysis on CSB revealed 27 liver cancer-related metabolites of which, 1-caffeoylquinic acid was the most enriched one contributing to 13% of the total interactions. Furthermore, 38 target genes were involved, the most enriched of which were Aldo-keto reductase family 1 member B1 (AKR1B10) and interleukin-2 (IL-2). KEGG pathway analysis unveiled 23 significantly related pathways including metabolic pathways that possessed the lowest p-value (1.6E-5). CONCLUSION: The findings demonstrated that CSB is a significant source of cytotoxic metabolites against breast cancer and liver cancer cell lines, hence, drawing attention to the pharmaceutical and medicinal value of this negligible plant organ and paving the route for insightful research into its exact pharmacological cytotoxic mechanisms.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Cynara scolymus , Neoplasias Hepáticas , Metabolômica , Farmacologia em Rede , Extratos Vegetais , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Cynara scolymus/química , Feminino , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Etnofarmacologia , Sobrevivência Celular/efeitos dos fármacos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa