Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Heart Lung Circ ; 32(8): 894-904, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37507275

RESUMO

Significant advances have been made in artificial intelligence technology in recent years. Many health care applications have been investigated to assist clinicians and the technology is close to being integrated into routine clinical practice. The high prevalence of cardiac disease in Australia places overwhelming demands on the existing health care system, challenging its capacity to provide quality patient care. Artificial intelligence has emerged as a promising solution. This discussion paper provides an Australian perspective on the current state of artificial intelligence in cardiology, including the benefits and challenges of implementation. This paper highlights some current artificial intelligence applications in cardiology, while also detailing challenges such as data privacy, ethical considerations, and integration within existing health infrastructures. Overall, this paper aims to provide insights into the potential benefits of artificial intelligence in cardiology, while also acknowledging the barriers that need to be addressed to ensure safe and effective implementation into an Australian health system.


Assuntos
Cardiologia , Cardiopatias , Humanos , Inteligência Artificial , Austrália/epidemiologia , Atenção à Saúde
2.
Sensors (Basel) ; 20(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599883

RESUMO

Automatic vehicle license plate recognition is an essential part of intelligent vehicle access control and monitoring systems. With the increasing number of vehicles, it is important that an effective real-time system for automated license plate recognition is developed. Computer vision techniques are typically used for this task. However, it remains a challenging problem, as both high accuracy and low processing time are required in such a system. Here, we propose a method for license plate recognition that seeks to find a balance between these two requirements. The proposed method consists of two stages: detection and recognition. In the detection stage, the image is processed so that a region of interest is identified. In the recognition stage, features are extracted from the region of interest using the histogram of oriented gradients method. These features are then used to train an artificial neural network to identify characters in the license plate. Experimental results show that the proposed method achieves a high level of accuracy as well as low processing time when compared to existing methods, indicating that it is suitable for real-time applications.

3.
PLoS One ; 19(6): e0281568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917071

RESUMO

Deep learning, a subset of machine learning that utilizes neural networks, has seen significant advancements in recent years. These advancements have led to breakthroughs in a wide range of fields, from natural language processing to computer vision, and have the potential to revolutionize many industries or organizations. They have also demonstrated exceptional performance in the identification and mapping of seagrass images. However, these deep learning models, particularly the popular Convolutional Neural Networks (CNNs) require architectural engineering and hyperparameter tuning. This paper proposes a Deep Neuroevolutionary (DNE) model that can automate the architectural engineering and hyperparameter tuning of CNNs models by developing and using a novel metaheuristic algorithm, named 'Boosted Atomic Orbital Search (BAOS)'. The proposed BAOS is an improved version of the recently proposed Atomic Orbital Search (AOS) algorithm which is based on the principle of atomic model and quantum mechanics. The proposed algorithm leverages the power of the Lévy flight technique to boost the performance of the AOS algorithm. The proposed DNE algorithm (BAOS-CNN) is trained, evaluated and compared with six popular optimisation algorithms on a patch-based multi-species seagrass dataset. This proposed BAOS-CNN model achieves the highest overall accuracy (97.48%) among the seven evolutionary-based CNN models. The proposed model also achieves the state-of-the-art overall accuracy of 92.30% and 93.5% on the publicly available four classes and five classes version of the 'DeepSeagrass' dataset, respectively. This multi-species seagrass dataset is available at: https://ro.ecu.edu.au/datasets/141/.


Assuntos
Algoritmos , Aprendizado Profundo , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa