Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(18): 32509-32527, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242311

RESUMO

The coordination of piezoelectric and plasmonic effects to regulate the separation and migration of photo-generated carriers is still a significant method to improve the performance of visible-light photoresponse. Herein, we propose the PVDF@Ag-ZnO/Au composite nanofiber membranes utilizing the piezoelectric and plasmonic effects to promote the photocatalytic degradation of organic dyes. Here, ZnO nanorods can generate a built-in electric field under vibration to separate electron-hole pairs. The Schottky junction formed by noble metal/semiconductor can not only inhibit the recombination of photo-generated carriers and accelerate the migration of carriers, but also enhance the utilization of visible light. In addition, the structure has excellent flexibility and easy recycling characteristics. We demonstrate that the plasmonic effect of noble metal can enhance the light response of membranes and broaden light absorption from ultraviolet to visible light region. With the help of the surface-enhanced Raman scattering (SERS), modulation effects of the piezoelectric effect on light response is proved. For catalytic processes, rhodamine B (98.8%) can be almost completely degraded using PVDF@Ag-ZnO/Au within 120 minutes in the piezoelectric photocatalysis process, which is 2.2 and 2.8 times higher than photocatalysis and piezoelectric catalysis, respectively. This work provides a promising strategy for harnessing solar and mechanical energy.

2.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234900

RESUMO

Interface modification is an important way to get better performance from organic solar cells (OSCs). A natural biomolecular material methionine was successfully applied as the electron transport layer (ETL) to the inverted OSCs in this work. A series of optical, morphological, and electrical characterizations of thin films and devices were used to analyze the surface modification effects of methionine on zinc oxide (ZnO). The analysis results show that the surface modification of ZnO with methionine can cause significantly reduced surface defects for ZnO, optimized surface morphology of ZnO, improved compatibility between ETL and the active layer, better-matched energy levels between ETL and the acceptor, reduced interface resistance, reduced charge recombination, and enhanced charge transport and collection. The power conversion efficiency (PCE) of OSCs based on PM6:BTP-ec9 was improved to 15.34% from 14.25% by modifying ZnO with methionine. This work shows the great application potential of natural biomolecule methionine in OSCs.


Assuntos
Óxido de Zinco , Transporte de Elétrons , Metionina , Racemetionina
3.
J Phys Chem Lett ; 13(38): 8864-8871, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36125003

RESUMO

The relatively weak Raman enhanced factors of semiconductor-based substrate limit its further application in surface-enhanced Raman scattering (SERS). Here, a kind of two-dimensional (2D) semimetal material, molybdenum carbide (Mo2C) film, is prepared via a chemical vapor deposition (CVD) method, and the origin of SERS is investigated for the first time. The detection limits of the prepared Mo2C films for crystal violet (CV) and rhodamine 6G (R6G) molecules are low at 10-6 M and 10-8 M, respectively. Our detailed theoretical analysis, based on density functional theory and the finite element method, demonstrates that the enhancement of the 2D Mo2C film is indeed CM in nature rather than the EM effects. Besides, the basic doping strategies are proposed to further optimize the SERS sensitivity of Mo2C for Fermi level regulation. We believe this work will provide a helpful guide for developing a highly sensitive semimetal SERS substrate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa