Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(27): 18854-18864, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38946575

RESUMO

Supported noble metal nanocatalysts typically exhibit strong crystal plane dependent catalytic behavior, but their working mechanism is still unclear. Herein, using anatase TiO2 with well-exposed crystal facets of {101}, {100} and {001} as a prototype support, Pd- and Pt-based supported TiO2 nanocatalysts (TiO2-Pd and TiO2-Pt) were prepared by chemical reduction with NaBH4 as reducer, and they showed a distinct metal-dependent crystal facet effect in the selective hydrogenation of cinamaldehyde (CAL). For Pd-based nanocatalysts, most Pd species on the {100} plane of TiO2 are present in the oxidized form with positive charges and unexpectedly show higher reactivity than the Pd species in the zero-valence state on the {101} and {001} planes. On the contrary, Pt species on all three crystal planes of TiO2 show zero-valence state, with relatively low conversion, but much better selectivity for hydrogenation of a CO bond than Pd-based catalysts. Well-designed experiments manipulating the stability and type of surface oxygen species confirmed that the essence of the crystal facet effect of the catalyst support actually creates a unique nanoconfined interface at the molecular level to construct a surface p-band intermediate state (PBIS), which provides a new alternative channel for surface electron transfer and consequently accelerates the reaction kinetics.

2.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38099550

RESUMO

Aggregation-induced emission (AIE) is an effective strategy for improving the photoluminescence (PL) performance of metal nanoclusters (MNCs). However, the origin of AIE in MNCs is still not fully understood, which is pivotal for the design of AIE luminogens (AIEgens). Here, water soluble silver nanoclusters (Ag NCs) with AIE properties were synthesized. These as-synthesized non-luminescent Ag NCs will become photoluminescent when transferred from water to ethanol, and the emission peak was redshifted from ∼560 to ∼600 nm and largely intensified with the addition of Cu2+. The addition of Cu2+ makes a big difference in the PL properties of Ag NCs. That is, the PL will be enhanced if Cu2+ is added with the sequence "Ag NCs + Cu2++EtOH." In contrast, the PL will be quenched if Cu2+ is added with the sequence "Ag NCs + EtOH + Cu2+." The PL was from the supramolecular clusters formed by the assembly of capping ligands on the confined surface of individual silver clusters through weak interactions. The addition of Cu2+ could regulate the assembly structure and further affect the energy lever (p-band) through space electron interactions. These results provide new insights into the AIE process in metal nanoclusters.

3.
Sci Technol Adv Mater ; 24(1): 2210723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205011

RESUMO

In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated p band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.

4.
Macromol Rapid Commun ; 43(5): e2100720, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34962323

RESUMO

Nontraditional intrinsic luminescence (NTIL) which always accompanied with aggregation-induced emission (AIE) features has received considerable attention due to their importance in the understanding of basic luminescence principle and potential practical applications. However, the rational modulation of the NTIL of nonconventional luminophores remains difficult, on account of the limited understanding of emission mechanisms. Herein, the emission color of nonconjugated poly(methyl vinyl ether-alt-maleic anhydride) (PMVEMA) can be readily regulated from blue to red by controlling the alkalinity during the hydrolysis process. The nontraditional photoluminescence with AIE property is from the new formed p-band state, resulting from the strong overlapping of p orbitals of the clustered O atoms through space interactions. Hydrated hydroxide complexes embedded in the entangled polymer chain make big difference on the clustering of O atoms which dominates the AIE property of nonconjugated PMVEMA. These new insights into the photoluminescence mechanism of NTIL should stimulate additional experimental and theoretical studies and can benefit the molecular-level design of nontraditional chromophores for optoelectronics and other applications.


Assuntos
Luminescência , Polímeros , Hidróxidos , Anidridos Maleicos
5.
Phys Chem Chem Phys ; 24(13): 7923-7936, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311880

RESUMO

Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir-Hinshelwood (L-H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt-Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L-H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag-Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.


Assuntos
Elétrons , Prótons , Nitrofenóis/química , Água
6.
Phys Chem Chem Phys ; 23(23): 12950-12957, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34086019

RESUMO

Concerted electron and proton transfer is a key step for the reversible conversion of molecular hydrogen in both heterogeneous nanocatalysis and metalloenzyme catalysis. However, its activation mechanism involving electron and proton transfer kinetics remains elusive. With the most widely used catalytic hydride reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as a model reaction, we evaluate the catalytic activity of noble metal nanoparticles (NPs) trapped in porous silica in aqueous NaBH4 solution. By virtue of a novel combination of catalyst design, reaction kinetics, isotope labeling, and multiple spectroscopic techniques, the real catalytic site for the conversion of -NO2 to -NH2 is identified to be the water-hydroxyl transition metal complex, which could further react with NaBH4 to form a new triangular configuration metal complex of H3B-water-hydroxyl with dynamic features. It yields an ensemble of surface electronic states (SESs) though space overlapping of p orbitals of one B and several O atoms (including the O atoms of 4-NP), which could act as an alternative channel for concerted electron and proton transfer. This work highlights the critical role of the conceptual SESs model in heterogeneous catalysis to tune the chemical reactivity and also sheds light on the intricate working of the [FeFe]-hydrogenases.

7.
Chemistry ; 24(2): 478-486, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29105872

RESUMO

Mesoporous nanospheres are highly regarded for their applications in nanomedicine, optical devices, batteries, nanofiltration, and heterogeneous catalysis. In the last field, the dendritic morphology, which favors molecular diffusion, is a very important morphology known for silica, but not yet for carbon. A one-pot, easy, and scalable co-sol-gel route by using the triphasic resol-surfactant-silica system is shown to yield the topologies of dendritic and core-shell-corona mesoporous sister nanospheres by inner radial phase speciation control on a mass-transfer-limited process, depending on the relative polycondensation rates of the resol polymer and silica phases. The trick was the use of polyolamines with different catalytic activities on each hard phase polycondensation. The self-entanglement of phases is produced at the {O- , S+ , I- } organic-surfactant-inorganic interface. Mono- and biphasic mesoporous sister nanospheres of carbon and/or silica are derivatized from each mother nanospheres and called "syntaxic" because of similar sizes and mirrored morphologies. Comparing these "false twins", or yin and yang mesoporous nanospheres, functionalized by sulfonic groups provides evidence of the superiority of the dendritic topologies and the absence of a shell on the diffusion-controlled catalytic alkylation of m-cresol.

8.
ACS Phys Chem Au ; 2(1): 47-58, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36855578

RESUMO

Molecules confined in the nanocavity and nanointerface exhibit rich, unique physicochemical properties, e.g., the chromophore in the ß-barrel can of green fluorescent protein (GFP) exhibits tunable bright colors. However, the physical origin of their photoluminescence (PL) emission remains elusive. To mimic the microenvironment of the GFP protein scaffold at the molecule level, two groups of nanocavities were created by molecule self-assembly using organic chromophores and by organic functionalization of mesoporous silica, respectively. We provide strong evidence that structural water molecules confined in these nanocavities are color emitters with a universal formula of {X+·(OH-·H2O)·(H2O) n-1}, in which X is hydrated protons (H3O+) or protonated amino (NH3 +) groups as an anchoring point, and that the efficiency of PL is strongly dependent on the stability of the main emitter centers of the structural hydrated hydroxide complex (OH-·H2O), which is a key intermediate to mediate electron transfer dominated by proton transfer at confined nanospace. Further controlled experiments and combined characterizations by time-resolved steady-state and ultrafast transient optical spectroscopy unveil an unusual multichannel radiative and/or nonradiative mechanism dominated by quantum transient states with a distinctive character of topological excitation. The finding of this work underscores the pivotal role of structurally bound H2O in regulating the PL efficiency of aggregation-induced emission luminogens and GFP.

9.
Front Chem ; 9: 756993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646815

RESUMO

On the origin of photoluminescence of noble metal NCs, there are always hot debates: metal-centered quantum-size confinement effect VS ligand-centered surface state mechanism. Herein, we provided solid evidence that structural water molecules (SWs) confined in the nanocavity formed by surface-protective-ligand packing on the metal NCs are the real luminescent emitters of Au-Ag bimetal NCs. The Ag cation mediated Au-Ag bimetal NCs exhibit the unique pH-dependent dual-emission characteristic with larger Stokes shift up to 200 nm, which could be used as potential ratiometric nanosensors for pH detection. Our results provide a completely new insight on the understanding of the origin of photoluminescence of metal NCs, which elucidates the abnormal PL emission phenomena, including solvent effect, pH-dependent behavior, surface ligand effect, multiple emitter centers, and large-Stoke's shift.

10.
Nanoscale ; 13(35): 15058-15066, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533160

RESUMO

Intrinsically, free water molecules are a colourless liquid. If it is colourful, why and how does it emit the bright colours? We provided direct evidence that when water was trapped into the sub-nanospace of zeolites, the structural water molecules (SWs) exhibited strong tunable photoluminescence (PL) emissions from blue to red colours with unprecedented ultra-long lifetimes up to the second scale at liquid nitrogen temperature. Further controlled experiments and combined characterizations by time-resolved steady-state and ultra-fast femtosecond (fs) transient optical spectroscopy showed that the singly adsorbed hydrated hydroxide complex {OH-·H2O} as SWs in the confined nanocavity is the true emitter centre, whose PL efficiency strongly depends on the type and stability of the SWs, which is dominated by H-bond interactions, such as the solvent effect, pH value and operating temperature. The emission of SWs exhibits the characteristic of topological excitations (TAs) due to the many-body quantum electron correlations in confined nanocavities, which differs from the local excitation of organic chromophores. Our model not only elucidates the origin of the PL of metal nanoclusters (NCs), but also provides a completely new insight to understand the nature of heterogeneous catalysis and interface bonding (or state) at the molecule level, beyond the metal-centred d band theory.

11.
Nanoscale Adv ; 2(5): 1792-1810, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132521

RESUMO

The interest in the design and controlled fabrication of dendritic mesoporous silica nanospheres (DMSNs) emanates from their widespread application in drug-delivery carriers, catalysis and nanodevices owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas. A variety of synthesis strategies have been reported, but there is no basic consensus on the elucidation of the pore structure and the underlying formation mechanism of DMSNs. Although all the DMSNs show a certain degree of similarity in structure, do they follow the same synthesis mechanism? What are the exact pore structures of DMSNs? How did the bimodal pore size distributions kinetically evolve in the self-assembly? Can the relative fractions of small mesopores and dendritic large pores be precisely adjusted? In this review, by carefully analysing the structures and deeply understanding the formation mechanism of each reported DMSN and coupling this with our research results on this topic, we conclude that all the DMSNs indeed have the same mesostructures and follow the same dynamic self-assembly mechanism using microemulsion droplets as super templates in the early reaction stage, even without the oil phase.

12.
Nanomaterials (Basel) ; 10(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033058

RESUMO

Recently, metal nanoclusters (MNCs) emerged as a new class of luminescent materials and have attracted tremendous interest in the area of luminescence-related applications due to their excellent luminous properties (good photostability, large Stokes shift) and inherent good biocompatibility. However, the origin of photoluminescence (PL) of MNCs is still not fully understood, which has limited their practical application. In this mini-review, focusing on the origin of the photoemission emission of MNCs, we simply review the evolution of luminescent mechanism models of MNCs, from the pure metal-centered quantum confinement mechanics to ligand-centered p band intermediate state (PBIS) model via a transitional ligand-to-metal charge transfer (LMCT or LMMCT) mechanism as a compromise model.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa