RESUMO
Strain engineering has been used as a versatile tool for regulating the thermal transport in various materials as a result of the phonon frequency shift. On the other hand, the phononic bandgap can be simultaneously tuned by the strain, which can play a critical role in wide phononic bandgap materials due to the high-order phonon anharmonicity. In this work, we investigate the complex role of uniaxial tensile strain on the lattice thermal conductivity of hydrogenated graphene-like borophene, by using molecular dynamics simulations with a machine learning potential. Our findings highlight a novel and intriguing phenomenon that the thermal conductivity in the armchair direction is non-monotonically dependent on the uniaxial armchair strain. Specifically, we uncover that the increase of phonon group velocity and the decrease of three-phonon scattering compete with the enhancement of four-phonon scattering under armchair strain, leading to the non-monotonic dependence. The enhanced four-phonon scattering originates from the unique bridged B-H bond that can sensitively control the phononic bandgap under armchair strain. This anomalous non-monotonic strain-dependence highlights the complex interplay between different mechanisms governing thermal transport in 2D materials with large phononic bandgaps. Our study offers valuable insights for designing innovative thermal management strategies based on strain.
RESUMO
Due to the minimization and integration of micro/nano-devices, the high density of interfaces becomes a significant challenge in various applications. Phonon modes at interface resulting from the mismatch between inhomogeneous functional counterparts are crucial for interfacial thermal transport and overall thermal management of micro/nano-devices, making it a topic of great research interest recently. Here, we comprehensively review the recent advances on the theoretical and experimental investigations of interfacial phonon mode and its impact on interfacial thermal transport. Firstly, we summarize the recent progresses of the theoretical and experimental characterization of interfacial phonon modes at various interfaces, along with the overview of the development of diverse methodologies. Then, the impact of interfacial phonon modes on interfacial thermal transport process are discussed from the normal modal decomposition and inelastic scattering mechanisms. Meanwhile, we examine various factors influencing the interfacial phonon modes and interfacial thermal transport, including temperature, interface roughness, interfacial mass gradient, interfacial disorder, and so on. Finally, an outlook is provided for future studies. This review provides a fundamental understanding of interfacial phonon modes and their impact on interfacial thermal transport, which would be beneficial for the exploration and optimization of thermal management in various micro/nano-devices with high density interfaces.