Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186538

RESUMO

The fascinating scent of rose (Rosa genus) flowers has captivated human senses for centuries, making them one of the most popular and widely used floral fragrances. Despite much progress over the last decade, many biochemical pathways responsible for rose scents remain unclear. We analyzed the floral scent compositions from various rose varieties and selected the modern cultivar Rosa hybrida 'Double Delight' as a model system to unravel the formation of rose dominant volatile terpenes, which contribute substantially to the rose fragrance. Key genes involved in rose terpene biosynthesis were functionally characterized. Cytosolic geranyl diphosphate (GPP) generated by geranyl/farnesyl diphosphate synthase (G/FPPS1) catalysis, played a pivotal role in rose scent production, and terpene synthases (TPSs) in roses play an important role in the formation of most volatile terpenes, but not for geraniol, citral or ß-citronellol. Subsequently, a series of enzymes, including geraniol dehydrogenase (GeDH), geranial reductase (GER), 12-oxophytodienoate reductase (OPR) and citronellal reductase (CAR), were characterized as involved in the transformation of geraniol to ß-citronellol in roses through three successive steps. Interestingly, the ß-citronellol biosynthesis pathway appears to be conserved in other horticultural plants like Lagerstroemia caudata and Paeonia lactiflora. Our findings provide valuable insights into the biosynthesis of rose volatile terpenoid compounds and offer essential gene resources for future breeding and molecular modification efforts.

2.
Plant Cell Physiol ; 61(7): 1365-1380, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32392327

RESUMO

Anthocyanin biosynthesis is mainly controlled by MYB-bHLH-WD40 (MBW) complexes that modulate the expression of anthocyanin biosynthetic genes (ABGs). The MYB regulators involved in anthocyanin biosynthesis arose early during plant evolution and thus might function divergently in different evolutionary lineages. Although the anthocyanin-promoting R2R3-MYB regulators in eudicots have been comprehensively explored, little consensus has been reached about functional discrepancies versus conservation among MYB regulators from different plant lineages. Here, we integrated transcriptome analysis, gene expression profiles, gain-of-function experiments and transient protoplast transfection assays to functionally characterize the monocot Freesia hybrida anthocyanin MYB regulator gene FhPAP1, which showed correlations with late ABGs. FhPAP1 could activate ABGs as well as TT8-clade genes FhTT8L, AtTT8 and NtAN1 when overexpressed in Freesia, Arabidopsis and tobacco, respectively. Consistently, FhPAP1 could interact with FhTT8L and FhTTG1 to form the conserved MBW complex and shared similar target genes with its orthologs from Arabidopsis. Most prominently, FhPAP1 displayed higher transactivation capacity than its homologs in Arabidopsis and tobacco, which was instantiated in its powerful regulation on ABGs. Moreover, we found that FhPAP1 might be the selected gene during the domestication and rapid evolution of the wild Freesia species to generate intensive flower pigmentation. These results showed that while the MBW complex was highly evolutionarily conserved between tested monocot and core eudicot plants, participating MYB regulators showed functional differences in transactivation capacity according to their activation domain and played important roles in the flower coloration domestication and evolution of angiosperms.


Assuntos
Antocianinas/biossíntese , Flores/metabolismo , Iridaceae/metabolismo , Fatores de Transcrição/fisiologia , Arabidopsis , Clonagem Molecular , Sequência Conservada , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Iridaceae/genética , Iridaceae/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Fatores de Transcrição/genética
3.
New Phytol ; 228(6): 1864-1879, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32696979

RESUMO

Floral flavonols play specific pivotal roles in pollinator attraction, pollen germination and fertility, in addition to other functions in vegetative organs. For many plants, the process of flavonol biosynthesis in late flower development stages and in mature flower tissues is poorly understood, in contrast to early flower development stages. It is thought that this process may be regulated independently of subgroup 7 R2R3 MYB (SG7 MYB) transcription factors. In this study, two FLS genes were shown to be expressed synchronously with the flower development-specific and tissue-specific biosynthesis of flavonols in Freesia hybrida. FhFLS1 contributed to flavonol biosynthesis in early flower buds, toruses and calyxes, and was regulated by four well-known SG7 MYB proteins, designated as FhMYBFs, with at least partial regulatory redundancy. FhFLS2 accounted for flavonols in late developed flowers and in the petals, stamens and pistils, and was targeted directly by non SG7 MYB protein FhMYB21L2. In parallel, AtMYB21 and AtMYB24 also activated AtFLS1, a gene highly expressed in Arabidopsis anthers and pollen, indicating the conserved regulatory roles of MYB21 against FLS genes in these two evolutionarily divergent angiosperm plants. Our results reveal a novel regulatory and synthetic mechanism underlying flavonol biosynthesis in floral organs and tissues which may be exploited to investigate supplementary roles of flavonols in flowers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Iridaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flavonóis , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética
4.
Biomed Mater ; 19(1)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048625

RESUMO

Extracellular matrix (ECM) scaffolds are widely applied in the field of regeneration as the result of their irreplaceable biological advantages, and the preparation of ECM scaffolds into ECM hydrogels expands the applications to some extent. However, weak mechanical properties of current ECM materials limit the complete exploitation of ECM's biological advantages. To enable ECM materials to be utilized in applications requiring high strength, herein, we created a kind of new ECM material, ECM film, and evaluated its mechanical properties. ECM films exhibited outstanding toughness with no cracks after arbitrarily folding and crumpling, and dramatically high strength levels of 86 ± 17.25 MPa, the maximum of which was 115 MPa. Such spectacular high-strength and high-toughness films, containing only pure ECM without any crosslinking agents and other materials, far exceed current pure natural polymer gel films and even many composite gel films and synthetic polymer gel films. In addition, both PC12 cells and Schwann cells cultured on the surface of ECM films, especially Schwann cells, showed good proliferation, and the neurite outgrowth of the PC12 cells was promoted, indicating the application potential of ECM film in peripheral nerve repair.


Assuntos
Matriz Extracelular , Polímeros , Ratos , Animais , Matriz Extracelular/fisiologia , Células de Schwann , Hidrogéis , Alicerces Teciduais
5.
Front Plant Sci ; 13: 978515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061772

RESUMO

Mechanical strength is essential for the upright growth habit, which is one of the most important characteristics of terrestrial plants. Lignin, a phenylpropanoid-derived polymer mainly present in secondary cell walls plays critical role in providing mechanical support. Here, we report that the prostrate-stem cultivar of the legume forage Medicago ruthenica cultivar 'Mengnong No. 1' shows compromised mechanical strength compared with the erect-stem cultivar 'Zhilixing'. The erect-stem cultivar, 'Zhilixing' has significantly higher lignin content, leading to higher mechanical strength than the prostrate-stem cultivar. The low abundance of miRNA397a in the Zhiixing cultivar causes reduced cleavage of MrLAC17 transcript, which results in enhanced expression level of MrLAC17 compared to that in the prostrate-stem cultivar Mengnong No. 1. Complementation of the Arabidopsis lac4 lac17 double mutants with MrLAC17 restored the lignin content to wild-type levels, confirming that MrLAC17 perform an exchangeable role with Arabidopsis laccases. LAC17-mediated lignin polymerization is therefore increased in the 'Zhilixing', causing the erect stem phenotype. Our data reveal the importance of the miR397a in the lignin biosynthesis and suggest a strategy for molecular breeding targeting plant architecture in legume forage.

6.
Front Plant Sci ; 13: 896540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599874

RESUMO

Lignin is a complex phenolic polymer that imparts cell wall strength, facilitates water transport and functions as a physical barrier to pathogens in all vascular plants. Lignin biosynthesis is a carbon-consuming, non-reversible process, which requires tight regulation. Here, we report that a major monomer unit of the lignin polymer can function as a signal molecule to trigger proteolysis of the enzyme L-phenylalanine ammonia-lyase, the entry point into the lignin biosynthetic pathway, and feedback regulate the expression levels of lignin biosynthetic genes. These findings highlight the highly complex regulation of lignin biosynthesis and shed light on the biological importance of monolignols as signaling molecules.

7.
Mol Plant ; 15(10): 1517-1532, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35996753

RESUMO

Glycosylation by uridine diphosphate-dependent glycosyltransferases (UGTs) in plants contributes to the complexity and diversity of secondary metabolites. UGTs are generally promiscuous in their use of acceptors, making it challenging to reveal the function of UGTs in vivo. Here, we described an approach that combined glycoside-specific metabolomics and precursor isotopic labeling analysis to characterize UGTs in Arabidopsis. We revisited the UGT72E cluster, which has been reported to catalyze the glycosylation of monolignols. Glycoside-specific metabolomics analysis reduced the number of differentially accumulated metabolites in the ugt72e1e2e3 mutant by at least 90% compared with that from traditional untargeted metabolomics analysis. In addition to the two previously reported monolignol glycosides, a total of 62 glycosides showed reduced accumulation in the ugt72e1e2e3 mutant, 22 of which were phenylalanine-derived glycosides, including 5-OH coniferyl alcohol-derived and lignan-derived glycosides, as confirmed by isotopic tracing of [13C6]-phenylalanine precursor. Our method revealed that UGT72Es could use coumarins as substrates, and genetic evidence showed that UGT72Es endowed plants with enhanced tolerance to low iron availability under alkaline conditions. Using the newly developed method, the function of UGT78D2 was also evaluated. These case studies suggest that this method can substantially contribute to the characterization of UGTs and efficiently investigate glycosylation processes, the complexity of which have been highly underestimated.


Assuntos
Arabidopsis , Lignanas , Arabidopsis/metabolismo , Cumarínicos/metabolismo , Glicosídeos/metabolismo , Glicosiltransferases/metabolismo , Ferro/metabolismo , Lignanas/metabolismo , Metabolômica , Fenilalanina/metabolismo , Plantas/metabolismo , Difosfato de Uridina/metabolismo
8.
Commun Biol ; 3(1): 396, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719499

RESUMO

Floral anthocyanin has multiple ecological and economic values, its biosynthesis largely depends on the conserved MYB-bHLH-WD40 (MBW) activation complex and MYB repressors hierarchically with the MBW complex. In contrast to eudicots, the MBW regulatory network model has not been addressed in monocots because of the lack of a suitable system, as grass plants exhibit monotonous floral pigmentation patterns. Presently, the MBW regulatory network was investigated in a non-grass monocot plant, Freesia hybrida. FhMYB27 and FhMYBx with different functional manners were confirmed to be anthocyanin related R2R3 and R3 MYB repressors, respectively. Particularly, FhMYBx could obstruct the formation of positive MBW complex by titrating bHLH proteins, whereas FhMYB27 mainly defected the activator complex into suppressor via its repression domains in C-terminus. Furthermore, the hierarchical and feedback regulatory loop was verified, indicating the synergistic and sophisticated regulatory network underlying Freesia anthocyanin biosynthesis was quite similar to that reported in eudicot plants.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Iridaceae/genética , Pigmentação/genética , Fatores Genéricos de Transcrição/genética , Repetições WD40/genética , Antocianinas/biossíntese , Antocianinas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Iridaceae/crescimento & desenvolvimento , Substâncias Macromoleculares/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
9.
Front Plant Sci ; 10: 1330, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681396

RESUMO

Flavonols and anthocyanins are two widely distributed groups of flavonoids that occurred apart during plant evolution and biosynthesized by shared specific enzymes involved in flavonoid metabolism. UDP-glucose, flavonoid 3-O-glycosyltransferase (UF3GT), is one of the common enzymes which could catalyze the glycosylation of both flavonol and anthocyanidin aglycons simultaneously in vitro. However, whether and how UF3GT paralogous genes function diversely at the biochemical and transcriptional levels are largely unknown. Recently, Fh3GT1 was identified to be a member of UF3GTs in Freesia hybrida. However, its expression patterns and enzymatic characteristics could not coincide well with flavonol accumulation. In an attempt to characterize other flavonoids, especially flavonol glycosyltransferase genes in Freesia, three closest candidate UFGT genes-Fh3GT2, Fh3GT3, and Fh3GT4-were mined from the Freesia transcriptomic database and isolated from the flowers of the widely distributed Freesia cultivar, Red River®. Based on bioinformatic analysis and enzymatic assays, Fh3GT2 turned out to be another bona fide glycosyltransferase gene. Biochemical analysis further proved that Fh3GT2 preferentially glucosylated kaempferol while Fh3GT1 controlled the glucosylation of quercetin and anthocyanidins. In addition, transfection assays demonstrated that Fh3GT2 could be mainly activated by the flavonol regulator FhMYBF1 or the anthocyanin regulator FhPAP1, whereas Fh3GT1 could only be activated by FhPAP1. These findings suggested that Fh3GTs might have functionally diverged in flavonoid biosynthesis at both the biochemical and transcriptional levels.

10.
Plant Physiol Biochem ; 141: 60-72, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31128564

RESUMO

The MBW complex, consisting of MYB, basic helix-loop-helix (bHLH) and WD40 proteins, regulates multiple traits in plants, such as anthocyanin and proanthocyanidin biosynthesis and cell fate determination. The complex has been widely identified in dicot plants, whereas few studies are concentrated on monocot plants which are of crucial importance to decipher its functional diversities among angiosperms during evolution. In present study, a WD40 gene from Freesia hybrida, designated as FhTTG1, was cloned and functionally characterized. Real-time PCR analysis indicated that it was expressed synchronously with the accumulation of both proanthocyanidins and anthocyanins in Freesia flowers. Transient protoplast transfection and biomolecular fluorescence complementation (BiFC) assays demonstrated that FhTTG1 could interact with FhbHLH proteins (FhTT8L and FhGL3L) to constitute the MBW complex. Moreover, the transportation of FhTTG1 to nucleus was found to rely on FhbHLH factors. Outstandingly, FhTTG1 could highly activate the anthocyanin or proanthocyanidin biosynthesis related gene promoters when co-transfected with MYB and bHLH partners, implying that FhTTG1 functioned as a member of MBW complex to control the anthocyanin or proanthocyanidin biosynthesis in Freesia hybrida. Further ectopic expression assays in Arabidopsis ttg1-1 showed the defective phenotypes of ttg1-1 were partially restored. Molecular biological assays validated FhTTG1 might interact with the endogenous bHLH factors to up-regulate genes responsible for anthocyanin and proanthocyanidin biosynthesis and trichome formation, indicating that FhTTG1 might perform exchangeable roles with AtTTG1. These results will not only contribute to the characterization of FhTTG1 in Freesia but also shed light on the establishment of flavonoid regulatory system in monocot plants, especially in Freesia hybrida.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Iridaceae/metabolismo , Proantocianidinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Iridaceae/genética , Mutação , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Tricomas/metabolismo , Repetições WD40
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa