Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(35)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38838645

RESUMO

Subsurface detection capability of bimodal atomic force microscopy (AFM) was investigated using the buried microcavity as a reference sample, prepared by partially covering a piece of highly oriented pyrolytic graphite (HOPG) flake with different thickness on a piece of a cleaned CD-R disk substrate. This capability can be manifested as the image contrast between the locations with and without the buried microcavities. The theoretical and experimental results demonstrated that the image contrast is significantly affected by the critical parameters, including the second eigenmode amplitude and frequency as well as local structural and mechanical properties of the sample itself. Specifically, improper parameter settings generally lead to incorrect identification of the buried microcavity due to the contrast reduction, contrast reversal and even disappearance. For accurate detection, the second eigenmode amplitude should be as small as possible on the premise of satisfying the signal-to-noise ratio and second eigenmode frequency should be close to the resonance frequency of the cantilever. In addition, the detectable depth is closely related to microcavity dimension (thickness and width) of the HOPG flake and local stiffness of the sample. These results would be helpful for further understanding of the detection mechanism of bimodal AFM and facilitating its application in nano-characterization of subsurface structures, such as the micro-/nano- channels to direct the flow of liquids in lab-on-a-chip devices.

2.
Angew Chem Int Ed Engl ; 63(28): e202401972, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38703075

RESUMO

Suffering from the susceptibility to decomposition, the potential electrochemical application of FeOCl has greatly been hindered. The rational design of the soft-hard material interface can effectively address the challenge of stress concentration and thus decomposition that may occur in the electrodes during charging and discharging. Herein, interlayer structure manipulation of FeOCl/MXene using soft-hard interface design method were conducted for electrochemical dechlorination. FeOCl was encapsulated in Ti3C2Tx MXene nanosheets by electrostatic self-assembly layer by layer to form a soft-hard mechanical hierarchical structure, in which Ti3C2Tx was used as flexible buffer layers to relieve the huge volume change of FeOCl during Cl- intercalation/deintercalation and constructed a conductive network for fast charge transfer. The CDI dechlorination system of FeOCl/Ti3C2Tx delivered outstanding Cl- adsorption capacity (158.47 ± 6.98 mg g-1), rate (6.07 ± 0.35 mg g-1 min-1), and stability (over 94.49 % in 30 cycles), and achieved considerable energy recovery (21.14 ± 0.25 %). The superior dechlorination performance was proved to originate from the Fe2+/Fe3+ topochemical transformation and the deformation constraint effect of Ti3C2Tx on FeOCl. Our interfacial design strategy enables a hard-to-soft integration capacity, which can serve as a universal technology for solving the traditional problem of electrode volume expansion.

3.
Langmuir ; 39(39): 13801-13806, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37463271

RESUMO

Spinel LiMn2O4 is a promising cathode material but suffers from severe capacity fading during battery operation. One of capacity fade mechanisms results from changes in its morphology and structure due to over-discharge. In this work, for the first time, we successfully tracked the morphologic evolution of LiMn2O4 submicron-sized particles during over-discharging by our home-made electrochemical high-speed atomic force microscopy (EC-HS-AFM). Seven hundred and sixty successive EC-HS-AFM images were stably captured at an imaging speed of ∼0.85 fps at corresponding potentials during over-discharging in ∼15 min, from which evolutions of nanoscale wrinkle-like and step-like structures on the particle surface were clearly observed. The phenomena could be resulted from the complex stresses due to structural distortion during the phase transformation from cubic (LiMn2O4) to tetragonal (Li2Mn2O4), and the formation of the Li2Mn2O4 phase was confirmed by ex situ XRD. Moreover, the particle surface area as a function of the potential was quantitatively extracted from the EC-HS-AFM images, revealing the irreversible expansion/contraction of the particles, and this finding obtained at the nanoscale was consistent with the macroscopic results tested by cyclic voltammetry and galvanostatic charge/discharge methods. These results demonstrate that the EC-HS-AFM is a powerful tool to establish the correlation between the over-discharge-induced surface morphology changes and irreversibility of the Li-ion insertion/extraction as well as capacity fading.

4.
Langmuir ; 38(12): 3887-3895, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35298164

RESUMO

Linking surface structure evolution to the capacity fading of cathode materials has been a problem in lithium ion batteries. Most of the strategies used to solve this problem are focused on the differences between the unaged and aged materials, leading to the loss of intermediate dynamic change information during cycling. Raman spectroscopy is a convenient, nondestructive, and highly sensitive tool for characterizing the surface/near-surface region structure. In this work, we improved an operando Raman system, which is able to record in situ and in real time a series of Raman spectra during charging/discharging cycles and is even able to record very weak Raman peaks without the use of SRES enhancement, which facilitates sample preparation. These series of Raman spectra revealed an inherent correlation between the electrode potential/Li content and the surface structure changes of the as-prepared pure LiMn2O4 film, including the biphase reaction, the evolution of the peroxo O-O bond, and the formation of the Mn3O4 surface phase. They were the first to show that the number of peroxo O-O bonds was decreased with an increasing number of cycles and that this decrease was accompanied by an increase in the Mn3O4 phase. With the help of the data measured by XPS, c-AFM, electrochemical testing equipment, and the calculation based on density functional theory, the causes of the capacity fading of the material are discussed. This work not only showed a direct correlation between the surface structure evolution and the capacity fading of the LiMn2O4 but also could provide an alternative operando Raman system that could be widely used for the in situ characterization of battery electrode materials.

5.
Langmuir ; 37(21): 6406-6413, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33999641

RESUMO

Evolution of LiMn2O4 mechanical property during charge/discharge cycles is a critical issue because it is closely related to the performance of lithium-ion batteries. Extensive studies have been conducted by first-principles calculations/molecular dynamics simulation at the atomic level and by the nanoindentation technique at the micron scale. In this study, cycling-induced topographic and mechanical evolutions of the LiMn2O4 films are investigated at the nanoscale using the bimodal atomic force microscopy (AFM), which provides a complementary approach to bridge the gap between atomic-level calculation and micron-scale measurement. The topographic change and elastic modulus degradation of the LiMn2O4 films during the charge/discharge cycles are found to occur simultaneously and irreversibly. Moreover, a dramatic decrease in the elastic modulus of the films takes place at the first 10 cycles, which is consistent with the significant loss of the capacity and the change of the Coulombic efficiency measured by the galvanostatic method. By considering the nanoscale phenomena and the macroscopic measurement results, the reasons for the elastic modulus degradation are discussed. This study would be a valuable addition to a better understanding of the degradation mechanisms of this cathode material.

6.
Langmuir ; 36(17): 4689-4694, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32279502

RESUMO

Exploring dynamic dimension change and lithium-ion diffusion kinetics of active nanoparticles is important to further improve the qualities of lithium-ion batteries (LIBs), such as the cycle life and charge rate. For advancing such research, an imaging technique that is capable of operating in an electrochemical environment with high spatial and temporal resolutions is really needed. In this work, we successfully developed electrochemical high-speed atomic force microscopy (EC-HS-AFM), which enabled nanoscale imaging at the rate of ∼1 frame/s during electrochemical cycling. The dimensional evolutions of LiMn2O4 single nanoparticles accompanying an insertion/extraction reaction of lithium ions were visualized. The surface area-potential hysteresis loops of the single nanoparticles at different sweep rates were quantitatively extracted from the successive HS-AFM images or video. The first-order derivative of the hysteresis loop was interestingly similar to the cyclic voltammetry (CV). Moreover, the EC-HS-AFM experiments confirmed that the utilization of the nanoparticles in the cathode can indeed improve the rate performance of the LIBs. These results demonstrated that EC-HS-AFM would be a promising tool to study dimensional evolutions and lithium-ion diffusion kinetics at a nanoscale.

7.
Opt Express ; 26(19): 24637-24652, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469577

RESUMO

Magnetic light-matter interaction plays a crucial role in nanophysics, such as in photonic topological insulators and metamaterials. Recent advances in all-dielectric nanophotonics especially demand vectorial mapping of magnetic light at visible wavelengths. Here, we report that a novel functional nanoprobe decorated with a silicon nanoparticle predominantly senses both the vertical and lateral magnetic field, that is, the magnetic field vector, complementary to a metal nanoparticle probe detecting the local electric field vector. As a proof-of-principle experiment, we demonstrate the mapping of magnetic field vectors in a transverse electric (TE) evanescent standing wave by this probe in a scanning near-field optical microscope (SNOM) with nanopolarimetry. It is for the first time that the full magnetic field vector of visible light, whose frequency exceeds 550 THz, can be directly detected with deep subwavelength resolution. Such functional probe and nanopolarimetry may pave the way toward complete vectorial near-field characterization over the whole visible band for nano-optics and subwavelength optics.

8.
Rev Sci Instrum ; 93(7): 073707, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922332

RESUMO

The emergence of functional materials, especially energy materials made up of various structures with different properties, requires the development of complementary or integrated characterization technologies. The combination of atomic force microscopy and Raman spectroscopy (AFM-Raman) offers a powerful technique for the in situ characterization of physical properties (AFM) and chemical composition (Raman) of materials simultaneously. To further extend the potential application in the battery's field, we here present an electrochemical AFM-Raman (EC-AFM-Raman) in the reflection mode, developed by designing a novel structure including water-immersion objective lens-based optics for high-sensitivity Raman excitation/collection, optical level detection for AFM imaging in the solution, and a dual-cell for electrochemical reaction. EC-AFM imaging and Raman measurement can be realized simultaneously. Dynamic morphologic evolution and phase transition of the LiMn2O4 particles during cyclic voltammetry measurement were successfully observed. This technique will provide the possibility of probing physicochemical phenomena of the battery materials and other surface/interface processes such as the formation of the solid electrolyte interphase layer.

9.
Luminescence ; 26(5): 305-12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20662108

RESUMO

ReAu nanoparticles with a molar ratio of 2:8 Re and Te nanoparticles were prepared by NaBH4 reduction. In HCl medium at 65°C, ultratrace Re, Te and ReAu bimetallic nanoparticles strongly catalyzed the slow reaction between Sn(II) and Te(VI) to form Te particles, which exhibited the strongest resonance scattering (RS) peak at 782 nm. As the amount of nanocatalyst increased, the RS intensity at 782 nm (I(782 nm) ) increased linearly, and the increase in intensity ΔI(782 nm) was linear to the ReAu, Re and Te concentrations in the ranges 0.07-9.0, 0.01-4.5 and 30-1200 nM, respectively. As a model, a ReAu immunonanoprobe catalytic Te-particle resonance scattering spectral (RSS) method was established for detection of CA125, using ReAu nanoparticle labeling CA125 antibody (CA125Ab) to obtain an immunonanoprobe (ReAuCA125Ab) for CA125. In pH 7.6 citric acid-Na2HPO4 buffer solution, ReAuCA125Ab aggregated nonspecifically. Upon addition of CA125, the immunonanoprobe reacted with it to form ReAuCA125Ab-CA125 dispersive immunocomplex in the solution. After the centrifugation, the supernatant containing the immunocomplex was used to catalyze the reaction of Te(VI)-Sn(II) to produce the Te particles that resulted in the I(782 nm) increasing. The ΔI(782 nm) was linear to CA125 concentration (C(CA125)) in the range 0.1-240 mU/mL. The regression equation, correlation coefficient and detection limit were ΔI(782 nm) = 1.61 C(CA125) + 1.5, 0.9978 and 0.02 mU/mL, respectively. The proposed method was applied to detect CA125 in serum samples, with satisfactory results.


Assuntos
Técnicas Biossensoriais/métodos , Antígeno Ca-125/química , Imunoensaio/instrumentação , Nanopartículas Metálicas/química , Anticorpos/química , Anticorpos/imunologia , Técnicas Biossensoriais/instrumentação , Antígeno Ca-125/sangue , Antígeno Ca-125/imunologia , Catálise , Ouro/química , Humanos , Imunoensaio/métodos , Rênio/química , Espalhamento de Radiação , Telúrio/química
10.
Rev Sci Instrum ; 91(10): 103701, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33138593

RESUMO

Development of lithium ion batteries with ultrafast charging rate as well as high energy/power densities and long cycle-life is one of the imperative works in the field of batteries. To achieve this goal, it requires not only to develop new electrode materials but also to develop nano-characterization techniques that are capable of investigating the dynamic evolution of the surface/interface morphology and property of fast charging electrode materials during battery operation. Although electrochemical atomic force microscopy (EC-AFM) holds high spatial resolution, its imaging speed is too slow to visualize dynamics occurring on the timescale of minutes. In this article, we present an electrochemical high-speed AFM (EC-HS-AFM), developed by addressing key technologies involving optical detection of small cantilever deflection, dual scanner capable of high-speed and wide-range imaging, and electrochemical cell with three electrodes. EC-HS-AFM imaging from 1 fpm to ∼1 fps with a maximum scan range of 40 × 40 µm2 has been stably and reliably realized. Dynamic morphological changes in the LiMn2O4 nanoparticles during cyclic voltammetry measurements in the 0.5 mol/l Li2SO4 solution were successfully visualized. This technique will provide the possibility of tracking dynamic processes of fast charging battery materials and other surface/interface processes such as the formation of the solid electrolyte interphase layer.

11.
Adv Mater ; 32(30): e2001292, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32567128

RESUMO

Electrochemical water splitting is of prime importance to green energy technology. Particularly, the reaction at the anode side, namely the oxygen evolution reaction (OER), requires a high overpotential associated with OO bond formation, which dominates the energy-efficiency of the whole process. Activating the anionic redox chemistry of oxygen in metal oxides, which involves the formation of superoxo/peroxo-like (O2 )n - , commonly occurs in most highly active catalysts during the OER process. In this study, a highly active catalyst is designed: electrochemically delithiated LiNiO2 , which facilitates the formation of superoxo/peroxo-like (O2 )n - species, i.e., NiOO*, for enhancing OER activity. The OER-induced surface reconstruction builds an adaptive heterojunction, where NiOOH grows on delithiated LiNiO2 (delithiated-LiNiO2 /NiOOH). At this junction, the lithium vacancies within the delithiated LiNiO2 optimize the electronic structure of the surface NiOOH to form stable NiOO* species, which enables better OER activity. This finding provides new insight for designing highly active catalysts with stable superoxo-like/peroxo-like (O2 )n - for water oxidation.

12.
Nanoscale ; 10(6): 2916-2922, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29369318

RESUMO

Probing single active nanoparticles of Li-ion battery electrodes is challenging but important to reveal their behaviors including morphology, mechanical properties and electrochemical reactions with an electrolyte. In this work, we in situ investigated voltage-induced behaviors of single LiNiO2 nanoparticles by merging conductive atomic force microscopy (CAFM) and amplitude modulation-frequency modulation (AM-FM) techniques. The former was used to apply a voltage between a selected single nanoparticle and a substrate through its tip, while the latter was done for imaging. Evolution in the morphology and stiffness of the nanoparticles induced by different voltages under air and dried argon atmospheres was tracked, respectively. The evolution mechanisms related to electrochemical reactions were discussed in detail. These results suggest that the merged techniques would provide an indirect and effective approach to study the behaviors and electrochemical reactions of electrode materials on the nanometer scale and even single nanoparticles.

13.
Sci Rep ; 7(1): 11164, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924172

RESUMO

ABSTARCT: The thin film Li-ion batteries have been extensively used in micro-electronic devices due to their miniaturization, high capacity density and environmental friendliness, etc. In order to further prolong the lifetime of the film batteries, one of important tasks is to explore the aging mechanisms of the cathode films. In this paper, we especially focused on the multi-characterization of the LiCoO2 film in nanoscale, which is carried out by combining advanced AFM-based techniques with capacity measurement. The surface morphology, contact stiffness as well as surface potential were measured by amplitude modulation-frequency modulation (AM-FM) and kelvin probe force microscope (KPFM), respectively. Remarkable changes after different numbers of charge/discharge cycling were observed and the intrinsic reasons of them were discussed in detail. To acknowledge the relationship with these microscopic changes, the macro-capacity of the thin films was also measured by the galvanostatic charge/discharge method. These comprehensive results would provide a deep insight into the fading mechanism of the cathode film, being helpful for the design and selection of the cathode film materials for high performance batteries.

14.
Nanoscale Res Lett ; 11(1): 223, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27117633

RESUMO

Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 µAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

15.
Sci Rep ; 6: 25633, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27157123

RESUMO

As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light.

16.
Ultramicroscopy ; 105(1-4): 330-5, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16076526

RESUMO

Chemoresistance remains the major obstacle to successful therapy of the lung cancer. The multi-drug resistance (MDR) is generally associated with altered expression of drug transporter proteins, such as P-glycoprotein (P-gp). So the distribution of P-gp on the membrane is of great importance to further study the interaction between drug and P-gp. In the present work, the P-gp of the H69/VP small-lung cancer cells was detected using monoclonal antibody UIC2. A secondary goat-anti mouse antibody coupled with biotin was used. The fluorescence emission was detected from a streptavidin-Texas Red. Results were investigated by a homemade scanning near-field optical microscope (SNOM) coupled to a confocal laser microspectrofluorometer (CLMF). Topographical images and localized spectra were obtained at the level of one cell membrane. It was found that the distribution of P-gp is not homogeneous and this observation is basically in accord with the fluorescent images obtained by classical microscopy. The distribution of P-gp would be localized in a higher region on a cell surface. This methodology would also enhance our understanding of MDR under physiological conditions.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Carcinoma de Células Pequenas/ultraestrutura , Neoplasias Pulmonares/ultraestrutura , Microscopia Eletrônica de Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Carcinoma de Células Pequenas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos
17.
Nanoscale Res Lett ; 9(1): 665, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593555

RESUMO

We report herein an alternative high-speed scanning force microscopy method in the contact mode based on a resonance-type piezoelectric bimorph scanner. The experimental setup, the modified optical beam deflection scheme suitable for smaller cantilevers, and a high-speed control program for simultaneous data capture are described in detail. The feature of the method is that the deflection and friction force images of the sample surface can be obtained simultaneously in real time. Images of various samples (e.g., a test grating, a thin gold film, and fluorine-doped tin oxide-coated glass slides) are acquired successfully. The imaging rate is 25 frames per second, and the average scan speed reaches a value of approximately 2.5 cm/s. The method combines the advantages of both observing the dynamic processes of the sample surface and monitoring the frictional properties on the nanometer scale. PACS: 07.79.Lh; 07.79.Sp; 68.37.Ps.

18.
Rev Sci Instrum ; 84(8): 083706, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24007072

RESUMO

A piezoelectric bimorph-based scanner operating in tip-scan mode for high speed atomic force microscope (AFM) is first presented. The free end of the bimorph is used for fixing an AFM cantilever probe and the other one is mounted on the AFM head. The sample is placed on the top of a piezoelectric tube scanner. High speed scan is performed with the bimorph that vibrates at the resonant frequency, while slow scanning is carried out by the tube scanner. The design and performance of the scanner is discussed and given in detailed. Combined with a commercially available data acquisition system, a high speed AFM has been built successfully. By real-time observing the deformation of the pores on the surface of a commercial piezoelectric lead zirconate titanate (PZT-5) ceramics under electric field, the dynamic imaging capability of the AFM is demonstrated. The results show that the notable advantage of the AFM is that dynamic process of the sample with large dimensions can be easily investigated. In addition, this design could provide a way to study a sample in real time under the given experimental condition, such as under an external electric field, on a heating stage, or in a liquid cell.

19.
Rev Sci Instrum ; 81(5): 053708, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20515146

RESUMO

A cantilevered bimorph-based resonance-mode scanner for high speed atomic force microscope (AFM) imaging is presented. The free end of the bimorph is used for mounting a sample stage and the other one of that is fixed on the top of a conventional single tube scanner. High speed scanning is realized with the bimorph-based scanner vibrating at resonant frequency driven by a sine wave voltage applied to one piezolayer of the bimorph, while slow scanning is performed by the tube scanner. The other piezolayer provides information on vibration amplitude and phase of the bimorph itself simultaneously, which is used for real-time data processing and image calibration. By adjusting the free length of the bimorph, the line scan rate can be preset ranging from several hundred hertz to several kilohertz, which would be beneficial for the observation of samples with different properties. Combined with a home-made AFM system and a commercially available data acquisition card, AFM images of various samples have been obtained, and as an example, images of the silicon grating taken at a line rate of 1.5 kHz with the scan size of 20 microm are given. By manually moving the sample of polished Al foil surface while scanning, the capability of dynamic imaging is demonstrated.

20.
Rev Sci Instrum ; 81(12): 123701, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21198026

RESUMO

An alternative flat scanner used for combining a scanning probe microscope with an inverted optical microscope is presented. The scanner has a novel structure basically consisting of eight identical piezoelectric tubes, metal flexure beams, and one sample mount. Because of the specially designed structure, the scanner is able to carry a sample of more than 120 g during imaging. By applying voltages of ±150 V, scanning range of more than 30 µm in three dimensions can be achieved. To improve the reliability of the stick-slip motion, a new method for sample micropositioning is proposed by applying a pulsed voltage to the piezotubes to produce a motion in the z-axis. Reliable translation of the sample has been thus accomplished with the step length from ∼700 nm to 9 µm over a range of several millimeters. A homemade scanning probe microscope-inverted optical microscope system based on the scanner is described. Experimental results obtained with the system are shown.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa