Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(6): 060406, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625038

RESUMO

Recent breakthroughs have opened the possibility of intermediate-scale quantum computing with tens to hundreds of qubits, and shown the potential for solving classical challenging problems, such as in chemistry and condensed matter physics. However, the high accuracy needed to surpass classical computers poses a critical demand on the circuit depth, which is severely limited by the non-negligible gate infidelity, currently around 0.1%-1%. The limited circuit depth places restrictions on the performance of variational quantum algorithms (VQA) and prevents VQAs from exploring desired nontrivial quantum states. To resolve this problem, we propose a paradigm of Schrödinger-Heisenberg variational quantum algorithms (SHVQA). Using SHVQA, the expectation values of operators on states that require very deep circuits to prepare can now be efficiently measured by rather shallow circuits. The idea is to incorporate a virtual Heisenberg circuit, which acts effectively on the measurement observables, into a real shallow Schrödinger circuit, which is implemented realistically on the quantum hardware. We choose a Clifford virtual circuit, whose effect on the Hamiltonian can be seen as efficient classical processing. Yet, it greatly enlarges the state's expressivity, realizing much larger unitary t designs. Our method enables accurate quantum simulation and computation that otherwise are only achievable with much deeper circuits or more accurate operations conventionally. This has been verified in our numerical experiments for a better approximation of random states, higher-fidelity solutions to the XXZ model, and the electronic structure Hamiltonians of small molecules. Thus, together with effective quantum error mitigation, our work paves the way for realizing accurate quantum computing algorithms with near-term quantum devices.

2.
Phys Rev Lett ; 128(4): 040403, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148136

RESUMO

Standard quantum theory was formulated with complex-valued Schrödinger equations, wave functions, operators, and Hilbert spaces. Previous work attempted to simulate quantum systems using only real numbers by exploiting an enlarged Hilbert space. A fundamental question arises: are the complex numbers really necessary in the standard formalism of quantum theory? To answer this question, a quantum game has been developed to distinguish standard quantum theory from its real-number analog, by revealing a contradiction between a high-fidelity multiqubit quantum experiment and players using only real-number quantum theory. Here, using superconducting qubits, we faithfully realize the quantum game based on deterministic entanglement swapping with a state-of-the-art fidelity of 0.952. Our experimental results violate the real-number bound of 7.66 by 43 standard deviations. Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.

3.
Science ; 384(6695): 579-584, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696580

RESUMO

Fractional quantum Hall (FQH) states are known for their robust topological order and possess properties that are appealing for applications in fault-tolerant quantum computing. An engineered quantum platform would provide opportunities to operate FQH states without an external magnetic field and enhance local and coherent manipulation of these exotic states. We demonstrate a lattice version of photon FQH states using a programmable on-chip platform based on photon blockade and engineering gauge fields on a two-dimensional circuit quantum electrodynamics system. We observe the effective photon Lorentz force and butterfly spectrum in the artificial gauge field, a prerequisite for FQH states. After adiabatic assembly of Laughlin FQH wave function of 1/2 filling factor from localized photons, we observe strong density correlation and chiral topological flow among the FQH photons. We then verify the unique features of FQH states in response to external fields, including the incompressibility of generating quasiparticles and the smoking-gun signature of fractional quantum Hall conductivity. Our work illustrates a route to the creation and manipulation of novel strongly correlated topological quantum matter composed of photons and opens up possibilities for fault-tolerant quantum information devices.

4.
Sci Bull (Beijing) ; 68(15): 1625-1631, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453825

RESUMO

Complex quantum electronic circuits can be used to design noise-protected qubits, but their complexity may exceed the capabilities of classical simulation. In such cases, quantum computers are necessary for efficient simulation. In this work, we demonstrate the use of variational quantum computing on a transmon-based quantum processor to simulate a superconducting quantum electronic circuit and design a new type of qubit called "Plasmonium", which operates in the plasmon-transition regime. The fabricated Plasmonium qubits show a high two-qubit gate fidelity of 99.58(3)%, as well as a smaller physical size and larger anharmonicity compared to transmon qubits. These properties make Plasmonium a promising candidate for scaling up multi-qubit devices. Our results demonstrate the potential of using quantum computers to aid in the design of advanced quantum processors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa