RESUMO
BACKGROUND AND AIMS: The hepatic venous pressure gradient (HVPG) is the standard for estimating portal pressure but requires expertise for interpretation. We hypothesized that HVPG could be extrapolated from liver histology using a machine learning (ML) algorithm. APPROACH AND RESULTS: Patients with NASH with compensated cirrhosis from a phase 2b trial were included. HVPG and biopsies from baseline and weeks 48 and 96 were reviewed centrally, and biopsies evaluated with a convolutional neural network (PathAI, Boston, MA). Using trichrome-stained biopsies in the training set (n = 130), an ML model was developed to recognize fibrosis patterns associated with HVPG, and the resultant ML HVPG score was validated in a held-out test set (n = 88). Associations between the ML HVPG score with measured HVPG and liver-related events, and performance of the ML HVPG score for clinically significant portal hypertension (CSPH) (HVPG ≥ 10 mm Hg), were determined. The ML-HVPG score was more strongly correlated with HVPG than hepatic collagen by morphometry (ρ = 0.47 vs. ρ = 0.28; P < 0.001). The ML HVPG score differentiated patients with normal (0-5 mm Hg) and elevated (5.5-9.5 mm Hg) HVPG and CSPH (median: 1.51 vs. 1.93 vs. 2.60; all P < 0.05). The areas under receiver operating characteristic curve (AUROCs) (95% CI) of the ML-HVPG score for CSPH were 0.85 (0.80, 0.90) and 0.76 (0.68, 0.85) in the training and test sets, respectively. Discrimination of the ML-HVPG score for CSPH improved with the addition of a ML parameter for nodularity, Enhanced Liver Fibrosis, platelets, aspartate aminotransferase (AST), and bilirubin (AUROC in test set: 0.85; 95% CI: 0.78, 0.92). Although baseline ML-HVPG score was not prognostic, changes were predictive of clinical events (HR: 2.13; 95% CI: 1.26, 3.59) and associated with hemodynamic response and fibrosis improvement. CONCLUSIONS: An ML model based on trichrome-stained liver biopsy slides can predict CSPH in patients with NASH with cirrhosis.
Assuntos
Hipertensão Portal/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/complicações , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Biópsia , Ensaios Clínicos Fase II como Assunto , Diagnóstico Diferencial , Feminino , Humanos , Hipertensão Portal/etiologia , Cirrose Hepática/patologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Pressão na Veia Porta , Prognóstico , Curva ROC , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Clinical trials in metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis) require histologic scoring for assessment of inclusion criteria and endpoints. However, variability in interpretation has impacted clinical trial outcomes. We developed an artificial intelligence-based measurement (AIM) tool for scoring MASH histology (AIM-MASH). AIM-MASH predictions for MASH Clinical Research Network necroinflammation grades and fibrosis stages were reproducible (κ = 1) and aligned with expert pathologist consensus scores (κ = 0.62-0.74). The AIM-MASH versus consensus agreements were comparable to average pathologists for MASH Clinical Research Network scores (82% versus 81%) and fibrosis (97% versus 96%). Continuous scores produced by AIM-MASH for key histological features of MASH correlated with mean pathologist scores and noninvasive biomarkers and strongly predicted progression-free survival in patients with stage 3 (P < 0.0001) and stage 4 (P = 0.03) fibrosis. In a retrospective analysis of the ATLAS trial (NCT03449446), responders receiving study treatment showed a greater continuous change in fibrosis compared with placebo (P = 0.02). Overall, these results suggest that AIM-MASH may assist pathologists in histologic review of MASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient responses.
Assuntos
Inteligência Artificial , Ensaios Clínicos como Assunto , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Cirrose Hepática/patologia , Seleção de Pacientes , Determinação de Ponto Final , Feminino , Estudos Retrospectivos , Masculino , Automação , Hepatopatias/patologia , Reprodutibilidade dos TestesRESUMO
Clinical trials in nonalcoholic steatohepatitis (NASH) require histologic scoring for assessment of inclusion criteria and endpoints. However, guidelines for scoring key features have led to variability in interpretation, impacting clinical trial outcomes. We developed an artificial intelligence (AI)-based measurement (AIM) tool for scoring NASH histology (AIM-NASH). AIM-NASH predictions for NASH Clinical Research Network (CRN) grades of necroinflammation and stages of fibrosis aligned with expert consensus scores and were reproducible. Continuous scores produced by AIM-NASH for key histological features of NASH correlated with mean pathologist scores and with noninvasive biomarkers and strongly predicted patient outcomes. In a retrospective analysis of the ATLAS trial, previously unmet pathological endpoints were met when scored by the AIM-NASH algorithm alone. Overall, these results suggest that AIM-NASH may assist pathologists in histologic review of NASH clinical trials, reducing inter-rater variability on trial outcomes and offering a more sensitive and reproducible measure of patient therapeutic response.