Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Immunol ; 23(12): 1687-1702, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456739

RESUMO

Aside from centrally induced trained immunity in the bone marrow (BM) and peripheral blood by parenteral vaccination or infection, evidence indicates that mucosal-resident innate immune memory can develop via a local inflammatory pathway following mucosal exposure. However, whether mucosal-resident innate memory results from integrating distally generated immunological signals following parenteral vaccination/infection is unclear. Here we show that subcutaneous Bacillus Calmette-Guérin (BCG) vaccination can induce memory alveolar macrophages (AMs) and trained immunity in the lung. Although parenteral BCG vaccination trains BM progenitors and circulating monocytes, induction of memory AMs is independent of circulating monocytes. Rather, parenteral BCG vaccination, via mycobacterial dissemination, causes a time-dependent alteration in the intestinal microbiome, barrier function and microbial metabolites, and subsequent changes in circulating and lung metabolites, leading to the induction of memory macrophages and trained immunity in the lung. These data identify an intestinal microbiota-mediated pathway for innate immune memory development at distal mucosal tissues and have implications for the development of next-generation vaccine strategies against respiratory pathogens.


Assuntos
Vacina BCG , Macrófagos Alveolares , Imunidade Treinada , Pulmão , Vacinação , Imunidade Inata
3.
Kidney Int ; 104(6): 1170-1184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774922

RESUMO

Estimated glomerular filtration rate (eGFR) impacts the concentration of plasma biomarkers confounding biomarker association studies of eGFR with reverse causation. To identify biomarkers causally associated with eGFR, we performed a proteome-wide Mendelian randomization study. Genetic variants nearby biomarker coding genes were tested for association with plasma concentration of 1,161 biomarkers in a multi-ancestry sample of 12,066 participants from the Prospective Urban and Rural Epidemiological (PURE) study. Using two-sample Mendelian randomization, individual variants' effects on biomarker concentration were correlated with their effects on eGFR and kidney traits from published genome-wide association studies (GWAS). Genetically altered concentrations of 22 biomarkers were associated with eGFR above a Bonferroni-corrected significance threshold. Five biomarkers were previously identified by GWAS (UMOD, FGF5, LGALS7, NINJ1, COL18A1). Nine biomarkers were within 1 Mb of the lead GWAS variant but the gene for the biomarker was unidentified as the candidate for the GWAS signal (INHBC, TNFRSF11A, TCN2, PXN1, PRTN3, PSMD9, TFPI, ITGB6, CA3). Single-cell transcriptomic data indicated the 22 biomarkers are expressed in kidney tubules, collecting duct, fibroblasts, and immune cells. Pathway analysis showed significant enrichment of identified biomarkers in the extracellular kidney parenchyma. Thus, using genetic regulators of biomarker concentration via proteome-wide Mendelian randomization, we identified 22 biomarkers that appear to causally impact eGFR in either a beneficial or adverse manner. The current study provides rationale for novel therapeutic targets for eGFR and emphasized a role for extracellular proteins produced by tubular cells and fibroblasts for impacting eGFR.


Assuntos
Estudo de Associação Genômica Ampla , Proteoma , Humanos , Taxa de Filtração Glomerular/genética , Análise da Randomização Mendeliana , Estudos Prospectivos , Fibroblastos , Biomarcadores , Complexo de Endopeptidases do Proteassoma , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
4.
BMC Med ; 21(1): 176, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158942

RESUMO

BACKGROUND: Childhood obesity is a global health concern and can lead to lifetime cardiometabolic disease. New advances in metabolomics can provide biochemical insights into the early development of obesity, so we aimed to characterize serum metabolites associated with overweight and adiposity in early childhood and to stratify associations by sex. METHODS: Nontargeted metabolite profiling was conducted in the Canadian CHILD birth cohort (discovery cohort) at age 5 years (n = 900) by multisegment injection-capillary electrophoresis-mass spectrometry. Clinical outcome was defined using novel combined measures of overweight (WHO-standardized body mass index ≥ 85th percentile) and/or adiposity (waist circumference ≥ 90th percentile). Associations between circulating metabolites and child overweight/adiposity (binary and continuous outcomes) were determined by multivariable linear and logistic regression, adjusting for covariates and false discovery rate, and by subsequent sex-stratified analysis. Replication was assessed in an independent replication cohort called FAMILY at age 5 years (n = 456). RESULTS: In the discovery cohort, each standard deviation (SD) increment of branched-chain and aromatic amino acids, glutamic acid, threonine, and oxoproline was associated with 20-28% increased odds of overweight/adiposity, whereas each SD increment of the glutamine/glutamic acid ratio was associated with 20% decreased odds. All associations were significant in females but not in males in sex-stratified analyses, except for oxoproline that was not significant in either subgroup. Similar outcomes were confirmed in the replication cohort, where associations of aromatic amino acids, leucine, glutamic acid, and the glutamine/glutamic acid ratio with childhood overweight/adiposity were independently replicated. CONCLUSIONS: Our findings show the utility of combining measures of both overweight and adiposity in young children. Childhood overweight/adiposity at age 5 years has a specific serum metabolic phenotype, with the profile being more prominent in females compared to males.


Assuntos
Sobrepeso , Obesidade Infantil , Criança , Pré-Escolar , Humanos , Feminino , Masculino , Sobrepeso/epidemiologia , Adiposidade , Estudos Transversais , Obesidade Infantil/epidemiologia , Glutamina , Canadá/epidemiologia , Aminoácidos Aromáticos , Metaboloma , Glutamatos
5.
J Nutr ; 153(4): 999-1007, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36780943

RESUMO

BACKGROUND: In pregnancy, choline is deemed an essential nutrient and carnitine needs are increased, but amounts remain undefined. OBJECTIVES: We aimed to measure choline and total dietary protein and dairy protein intake from food and supplements across pregnancy and the response to intake by profiling choline and carnitine metabolites across pregnancy and in cord blood. METHODS: An exploratory analysis of choline and protein intake from 3-d diet records and measures of 36 serum choline and carnitine metabolites in early (12-17 wk) and late (36-38 wk) pregnancy was conducted in participants from the Be Healthy in Pregnancy study randomized to high dairy protein+walking exercise or usual care. Metabolites were measured in fasted maternal and cord serum using multisegment injection-capillary electrophoresis-mass spectrometry. Mixed ANOVA adjusted for body mass index was performed for comparison of metabolites across pregnancy and between intervention and control. RESULTS: In 104 participants, the median (Q1, Q3) total choline intake was 347 (263, 427) mg/d in early and 322 (270, 437) mg/d in late pregnancy. Only ∼20% of participants achieved the recommended adequate intake (450 mg/d) and ∼10% consumed supplemental choline (8-200 mg/d). Serum-free choline (µmol/L) was higher in late compared with early pregnancy [12.9 (11.4, 15.1) compared with 9.68 (8.25, 10.61), P < 0.001], but choline downstream metabolites were similar across pregnancy. Serum carnitine [10.3 (9.01, 12.2) compared with 15.9 (14.1, 17.9) µmol/L, P < 0.001] and acetylcarnitine [2.35 (1.92, 2.68) compared with 3.0 (2.56, 3.59), P < 0.001] were significantly lower in late pregnancy. High cord:maternal serum metabolite ratios were found in most measured metabolites. CONCLUSIONS: Despite inadequate choline intake, serum-free choline was elevated in late pregnancy and enriched in cord blood compared with maternal serum. Serum carnitine declined in late pregnancy despite a high protein diet. The higher cord:maternal concentrations in choline and carnitine metabolites suggest active uptake in late pregnancy, reflecting the importance of these circulating metabolites in fetal development. This trial was registered at clinicaltrials.gov as NCT01689961.


Assuntos
Carnitina , Colina , Feminino , Humanos , Gravidez , Sangue Fetal/química , Suplementos Nutricionais , Proteínas Alimentares/análise
6.
J Nutr ; 153(2): 470-482, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36894240

RESUMO

BACKGROUND: Diet is known to affect the gut microbiota and the serum metabolome in adults, but this has not been fully explored in infants. Infancy is an important developmental period that may influence a person's long-term health. Infant development can be affected by diet, which also interacts with the developing gut microbiota. OBJECTIVES: This study aimed to explore the associations between diet, the gut microbiota, and the serum metabolome of 1-y-old infants with the overarching goal of identifying serum biomarkers of diet and/or the gut microbiota. METHODS: We derived dietary patterns of 1-y-old infants (n = 182) participating in the Canadian South Asian Birth Cohort (START) study. We compared gut microbiota α-diversity and ß-diversity and taxa relative abundance from 16S rRNA gene profiles with dietary patterns (PERMANOVA, Envfit) and investigated diet-serum metabolite associations using a multivariate analysis (partial least squares-discriminant analysis) and univariate analysis (t test). We explored the effect of nondietary factors on diet-serum metabolite relationships by incorporating diet, the gut microbiota, and maternal, perinatal, and infant characteristics in a multivariable forward stepwise regression. We replicated this analysis in White European infants, from the CHILD Cohort Study (n = 81). RESULTS: A dietary pattern characterized by formula consumption and negatively associated with breastfeeding most strongly predicted variation in the gut microbiota (R2 = 0.109) and serum metabolome (R2 = 0.547). Breastfed participants showed higher abundance of microbes from the genera Bifidobacterium (3.29 log2-fold) and Lactobacillus (7.93 log2-fold) and higher median concentrations of the metabolites S-methylcysteine (1.38 µM) and tryptophan betaine (0.43 µM) than nonbreastfed participants. Formula consuming infants showed higher median concentrations of branched-chain/aromatic amino acids (average 48.3 µM) than non-formula-consuming infants. CONCLUSIONS: Formula consumption and breastfeeding most strongly predicted the serum metabolites of 1-y-old infants, even when the gut microbiota, solid food consumption, and other covariates were considered.


Assuntos
Microbioma Gastrointestinal , Adulto , Gravidez , Feminino , Humanos , Lactente , Estudos de Coortes , RNA Ribossômico 16S/genética , Fezes/microbiologia , Canadá , Dieta , Metaboloma
7.
BMC Med ; 19(1): 292, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34823524

RESUMO

BACKGROUND: Defining the metabolic syndrome (MetS) in children remains challenging. Furthermore, a dichotomous MetS diagnosis can limit the power to study associations. We sought to characterize the serum metabolite signature of the MetS in early childhood using high-throughput metabolomic technologies that allow comprehensive profiling of metabolic status from a biospecimen. METHODS: In the Family Atherosclerosis Monitoring In earLY life (FAMILY) prospective birth cohort study, we selected 228 cases of MetS and 228 matched controls among children age 5 years. In addition, a continuous MetS risk score was calculated for all 456 participants. Comprehensive metabolite profiling was performed on fasting serum samples using multisegment injection-capillary electrophoresis-mass spectrometry. Multivariable regression models were applied to test metabolite associations with MetS adjusting for covariates of screen time, diet quality, physical activity, night sleep, socioeconomic status, age, and sex. RESULTS: Compared to controls, thirteen serum metabolites were identified in MetS cases when using multivariable regression models, and using the quantitative MetS score, an additional eight metabolites were identified. These included metabolites associated with gluconeogenesis (glucose (odds ratio (OR) 1.55 [95% CI 1.25-1.93]) and glutamine/glutamate ratio (OR 0.82 [95% CI 0.67-1.00])) and the alanine-glucose cycle (alanine (OR 1.41 [95% CI 1.16-1.73])), amino acids metabolism (tyrosine (OR 1.33 [95% CI 1.10-1.63]), threonine (OR 1.24 [95% CI 1.02-1.51]), monomethylarginine (OR 1.33 [95% CI 1.09-1.64]) and lysine (OR 1.23 [95% CI 1.01-1.50])), tryptophan metabolism (tryptophan (OR 0.78 [95% CI 0.64-0.95])), and fatty acids metabolism (carnitine (OR 1.24 [95% CI 1.02-1.51])). The quantitative MetS risk score was more powerful than the dichotomous outcome in consistently detecting this metabolite signature. CONCLUSIONS: A distinct metabolite signature of pediatric MetS is detectable in children as young as 5 years old and may improve risk assessment at early stages of development.


Assuntos
Síndrome Metabólica , Coorte de Nascimento , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/epidemiologia , Estudos Prospectivos
8.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32961048

RESUMO

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Assuntos
Eletroforese Capilar/métodos , Compostos Orgânicos/sangue , Compostos Orgânicos/urina , Espectrometria de Massas em Tandem/métodos , Cátions/química , Bases de Dados de Compostos Químicos , Eletrólitos/química , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes
9.
Analyst ; 144(22): 6595-6608, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31608347

RESUMO

Management of phenylketonuria (PKU) requires lifelong restriction of phenylalanine (Phe) intake using specialized medical foods to prevent neurocognitive impairment in affected patients. However, dietary adherence is challenging to maintain while ensuring adequate nutrition, which can lead to sub-optimal clinical outcomes. Metabolomics offers a systematic approach to identify new biomarkers of disease progression in PKU when using urine as a surrogate for blood specimens that is more accurate than self-reported diet records. Herein, the plasma and urine metabolome of a cohort of classic PKU patients (median age = 11 years; n = 22) mainly prescribed (78%) a Phe-restricted diet were characterized using multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS). Overall, there was good mutual agreement between plasma Phe and tyrosine (Tyr) concentrations measured from PKU patients when using an amino acid analyzer based on UPLC-UV as compared to MSI-CE-MS with a mean bias of 12% (n = 82). Longitudinal measurements of recently diagnosed PKU infants (n = 3) revealed good long-term regulation of blood Phe with dietary management, and only occasional episodes exceeding the recommended therapeutic range (>360 µM) unlike older PKU patients. Plasma metabolomic studies demonstrated that non-adherent PKU patients had lower circulating concentrations of Tyr, arginine, 2-aminobutyric acid, and propionylcarnitine (q < 0.05, FDR) that were inversely correlated to Phe (r ≈ -0.600 to -0.830). Nontargeted metabolite profiling also revealed urinary biomarkers associated with poor dietary adherence among PKU patients, including elevated concentrations of catabolites indicative of Phe intoxication (e.g., phenylpyruvic acid, phenylacetylglutamine, hydroxyphenylacetic acid). Additionally, PKU patients with poor blood Phe control had lower excretion of urinary compounds derived from co-metabolism of Tyr due to microbiota activity (e.g., cresol sulfate, phenylsulfate), as well as several metabolites associated with inadequate nutrient intake, including low carnitine and B vitamin status (e.g., folic acid, vitamin B12). Interestingly, an unknown urinary metabolite was strongly correlated with Phe excretion in PKU patients (r = 0.861), which was subsequently identified as imidazole lactic acid when using high resolution MS/MS. Overall, urine profiling offers a non-invasive approach for better treatment monitoring of individual PKU patients, which can also guide the design of novel therapies that improve adherence to Phe-restricted diets without acquired nutritional deficiencies.


Assuntos
Biomarcadores/urina , Dieta/psicologia , Monitorização Fisiológica/métodos , Cooperação do Paciente , Fenilcetonúrias/urina , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Análise por Conglomerados , Estudos Transversais , Eletroforese Capilar , Feminino , Humanos , Lactente , Masculino , Espectrometria de Massas , Metabolômica , Pessoa de Meia-Idade , Nutrientes/deficiência , Fenilcetonúrias/sangue , Fenilcetonúrias/dietoterapia , Adulto Jovem
10.
Anal Bioanal Chem ; 411(7): 1397-1407, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30683964

RESUMO

Urinary 1-hydroxypyrene (OH-Pyr) is widely used for biomonitoring human exposures to polycyclic aromatic hydrocarbons (PAHs) from air pollution and tobacco smoke. However, there have been few rigorous validation studies reported to ensure reliable OH-Pyr determination for occupational health and risk assessment. Herein, we report an inter-laboratory method comparison for urinary OH-Pyr when using gas chromatography-high-resolution mass spectrometry (GC-HRMS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) on urine specimens collected from firefighters (n = 42) deployed at the 2016 Fort McMurray wildfire. Overall, there was good mutual agreement in urinary OH-Pyr quantification following enzyme deconjugation with an average bias of 39% with no significant deviation from linearity (slope = 1.36; p > 0.05), whereas technical precision (< 12%) and average recovery (> 85%) were acceptable when using a stable-isotope internal standard. Faster analysis times (4 min) were achieved by LC-MS/MS without chemical derivatization, whereas lower detection limits (0.64 ng/L, S/N = 3) was realized with solid-phase extraction prior to GC-HRMS. A median creatinine normalized OH-Pyr concentration of 128 ng/g was measured for firefighters that were below the recommended biological exposure index due to delays between early stages of emergency firefighting and urine sample collection. Similar outcomes were also measured for 3-hydroxyphenanthrene and 9-hydroxyfluorene that were positively correlated with urinary OH-Pyr (p < 0.05), implying similar uptake, distribution, and liver biotransformation processes. Optimal specimen collection strategies post-deployment together with standardized protocols for OH-PAH analysis are critical to accurately evaluate smoke exposure in firefighters, including experimental conditions to ensure quantitative enzyme hydrolysis of urine samples. Graphical abstract.


Assuntos
Poluentes Ocupacionais do Ar/urina , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pirenos/urina , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Bombeiros , Humanos , Exposição por Inalação/efeitos adversos , Exposição Ocupacional/efeitos adversos , Fumaça/efeitos adversos , Incêndios Florestais
11.
J Sep Sci ; 38(18): 3262-3270, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26147246

RESUMO

A collaborative study on the robustness and portability of a capillary electrophoresis-mass spectrometry method for peptide mapping was performed by an international team, consisting of 13 independent laboratories from academia and industry. All participants used the same batch of samples, reagents and coated capillaries to run their assays, whereas they utilized the capillary electrophoresis-mass spectrometry equipment available in their laboratories. The equipment used varied in model, type and instrument manufacturer. Furthermore, different types of sheath-flow capillary electrophoresis-mass spectrometry interfaces were used. Migration time, peak height and peak area of ten representative target peptides of trypsin-digested bovine serum albumin were determined by every laboratory on two consecutive days. The data were critically evaluated to identify outliers and final values for means, repeatability (precision within a laboratory) and reproducibility (precision between laboratories) were established. For relative migration time the repeatability was between 0.05 and 0.18% RSD and the reproducibility between 0.14 and 1.3% RSD. For relative peak area repeatability and reproducibility values obtained were 3-12 and 9-29% RSD, respectively. These results demonstrate that capillary electrophoresis-mass spectrometry is robust enough to allow a method transfer across multiple laboratories and should promote a more widespread use of peptide mapping and other capillary electrophoresis-mass spectrometry applications in biopharmaceutical analysis and related fields.

12.
Nat Commun ; 15(1): 3004, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589361

RESUMO

The human gut microbiome establishes and matures during infancy, and dysregulation at this stage may lead to pathologies later in life. We conducted a multi-omics study comprising three generations of family members to investigate the early development of the gut microbiota. Fecal samples from 200 individuals, including infants (0-12 months old; 55% females, 45% males) and their respective mothers and grandmothers, were analyzed using two independent metabolomics platforms and metagenomics. For metabolomics, gas chromatography and capillary electrophoresis coupled to mass spectrometry were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing were performed. Here we show that infants greatly vary from their elders in fecal microbiota populations, function, and metabolome. Infants have a less diverse microbiota than adults and present differences in several metabolite classes, such as short- and branched-chain fatty acids, which are associated with shifts in bacterial populations. These findings provide innovative biochemical insights into the shaping of the gut microbiome within the same generational line that could be beneficial in improving childhood health outcomes.


Assuntos
Microbioma Gastrointestinal , Lactente , Masculino , Adulto , Feminino , Humanos , Criança , Idoso , Recém-Nascido , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Multiômica , Metaboloma , Fezes/microbiologia , Mães
13.
Environ Pollut ; 336: 122375, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586688

RESUMO

Damming of a river can trap and elevate levels of sediment-bound elements and alter food web dynamics in created reservoirs. It follows that dams may alter how elements and other nutrients, like the beneficial omega-3 fatty acids (n-3 FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are accumulated in fish and thus the chemical composition of species above and below this barrier to migration. This study examined the spatial and species differences in contaminants and nutrients in fish from the Wolastoq | Saint John River (New Brunswick, Canada) in association with a large hydroelectric dam (Mactaquac Generating Station; MQGS), a river which supports both recreational fisheries and subsistence fishing by Indigenous communities. In 2020 and 2021, Smallmouth Bass, Yellow Perch, American Eel, and Striped Bass were collected from locations upstream (reservoir and river) and downstream of the MQGS and analyzed for mercury (Hg) and 30 other trace elements, n-3 FAs, δ15N, and δ13C. Fish from the reservoir were highest in the beneficial elements P, S, and K, while fish from upstream of the reservoir had lower levels of toxic elements, including Hg. The dam appeared to alter food web dynamics, as fish from the reservoir and immediately downstream of the dam had higher δ15N and reservoir fish were depleted in δ13C. DHA and Hg were positively corelated with δ15N, and EPA in Smallmouth Bass was higher in sites where fish had higher δ13C. Overall, this study suggests that the dam altered food web dynamics and the uptake of contaminants and nutrients by fish, and that location and species are important factors when examining the risks and benefits of consuming wild fish from a system impacted by a large dam.


Assuntos
Ácidos Graxos Ômega-3 , Mercúrio , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Mercúrio/análise , Peixes
14.
Heliyon ; 9(6): e16651, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332914

RESUMO

Evidence supports a complex interplay of gut microbiome and host metabolism as regulators of obesity. The metabolic phenotype and microbial metabolism of host diet may also contribute to greater obesity risk in children early in life. This study aimed to identify features that discriminated overweight/obese from normal weight infants by integrating gut microbiome and serum metabolome profiles. This prospective analysis included 50 South Asian children living in Canada, selected from the SouTh Asian biRth cohorT (START). Serum metabolites were measured by multisegment injection-capillary electrophoresis-mass spectrometry and the relative abundance of bacterial 16S rRNA gene amplicon sequence variant was evaluated at 1 year. Cumulative body mass index (BMIAUC) and skinfold thickness (SSFAUC) scores were calculated from birth to 3 years as the total area under the growth curve (AUC). BMIAUC and/or SSFAUC >85th percentile was used to define overweight/obesity. Data Integration Analysis for Biomarker discovery using Latent cOmponent (DIABLO) was used to identify discriminant features associated with childhood overweight/obesity. The associations between identified features and anthropometric measures were examined using logistic regression. Circulating metabolites including glutamic acid, acetylcarnitine, carnitine, and threonine were positively, whereas γ-aminobutyric acid (GABA), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were negatively associated with childhood overweight/obesity. The abundance of the Pseudobutyrivibrio and Lactobacillus genera were positively, and Clostridium sensu stricto 1 and Akkermansia were negatively associated with childhood overweight/obesity. Integrative analysis revealed that Akkermansia was positively whereas Lactobacillus was inversely correlated with GABA and SDMA, and Pseudobutyrivibrio was inversely correlated with GABA. This study provides insights into metabolic and microbial signatures which may regulate satiety, energy metabolism, inflammatory processes, and/or gut barrier function, and therefore, obesity trajectories in childhood. Understanding the functional capacity of these molecular features and potentially modifiable risk factors such as dietary exposures early in life may offer a novel approach for preventing childhood obesity.

15.
Metabolites ; 13(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37887396

RESUMO

The Omega-3 Index (O3I) reflects eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content in erythrocytes. While the O3I is associated with numerous health outcomes, its widespread use is limited. We investigated whether urinary metabolites could be used to non-invasively monitor the O3I in an exploratory analysis of a previous placebo-controlled, parallel arm randomized clinical trial in males and females (n = 88) who consumed either ~3 g/d olive oil (OO; control), EPA, or DHA for 12 weeks. Fasted blood and first-void urine samples were collected at baseline and following supplementation, and they were analyzed via gas chromatography and multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), respectively. We tentatively identified S-carboxypropylcysteamine (CPCA) as a novel urinary biomarker reflecting O3I status, which increased following both EPA and DHA (p < 0.001), but not OO supplementation, and was positively correlated to the O3I (R = 0.30, p < 0.001). Additionally, an unknown dianion increased following DHA supplementation, but not EPA or OO. In ROC curve analyses, CPCA outperformed all other urinary metabolites in distinguishing both between OO and EPA or DHA supplementation groups (AUC > 80.0%), whereas the unknown dianion performed best in discriminating OO from DHA alone (AUC = 93.6%). Candidate urinary biomarkers of the O3I were identified that lay the foundation for a non-invasive assessment of omega-3 status.

16.
Biochemistry ; 51(39): 7651-3, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22970758

RESUMO

Pharmacological chaperones (PCs) are small molecules that stabilize and promote protein folding. Enzyme inhibition is widely used for PC selection; however, it does not accurately reflect chaperone activity. We introduce a functional assay for characterization of PCs based on their capacity to restore enzyme activity that is abolished upon chemical denaturation. Dose-dependent activity curves were performed as a function of urea to assess the chaperone potency of various ligands to ß-glucocerebrosidase as a model system. Restoration of enzyme activity upon denaturation allows direct screening of PCs for treatment of genetic disorders associated with protein deficiency, such as Gaucher disease.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ativação Enzimática/efeitos dos fármacos , Glucosilceramidase/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/enzimologia , Glucosilceramidase/química , Humanos , Ligantes , Desnaturação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-35450870

RESUMO

INTRODUCTION: This study aimed to identify serum metabolomic signatures associated with gestational diabetes mellitus (GDM), and to examine if ethnic-specific differences exist between South Asian and white European women. RESEARCH DESIGN AND METHODS: Prospective cohort study with a nested case-control analysis of 600 pregnant women from two Canadian birth cohorts; using an untargeted approach, 63 fasting serum metabolites were measured and analyzed using multisegment injection-capillary electrophoresis-mass spectrometry. Multivariate logistic regression modeling was conducted overall and by cohort. RESULTS: The proportion of women with GDM was higher in South Asians (27.1%) compared with white Europeans (17.9%). Several amino acid, carbohydrate, and lipid pathways related to GDM were common to South Asian and white European women. Elevated circulating concentrations of glutamic acid, propionylcarnitine, tryptophan, arginine, 2-hydroxybutyric acid, 3-hydroxybutyric acid, and 3-methyl-2-oxovaleric acid were associated with higher odds of GDM, while higher glutamine, ornithine, oxoproline, cystine, glycine with lower odds of GDM. Per SD increase in glucose concentration, the odds of GDM increased (OR=2.07, 95% CI 1.58 to 2.71), similarly for metabolite ratios: glucose to glutamine (OR=2.15, 95% CI 1.65 to 2.80), glucose to creatinine (OR=1.79, 95% CI 1.39 to 2.32), and glutamic acid to glutamine (OR=1.46, 95% CI 1.16 to 1.83). South Asians had higher circulating ratios of glucose to glutamine, glucose to creatinine, arginine to ornithine, and citrulline to ornithine, compared with white Europeans. CONCLUSIONS: We identified a panel of serum metabolites implicated in GDM pathophysiology, consistent in South Asian and white European women. The metabolic alterations leading to larger ratios of glucose to glutamine, glucose to creatinine, arginine to ornithine, and citrulline to ornithine in South Asians likely reflect the greater burden of GDM among South Asians compared with white Europeans.


Assuntos
Diabetes Gestacional , Arginina , Povo Asiático , Canadá , Citrulina , Creatinina , Feminino , Glucose , Ácido Glutâmico , Glutamina , Humanos , Ornitina , Gravidez , Estudos Prospectivos
18.
Nutrients ; 14(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35745237

RESUMO

The extent to which variation in food-related metabolites are attributable to non-dietary factors remains unclear, which may explain inconsistent food-metabolite associations observed in population studies. This study examined the association between non-dietary factors and the serum concentrations of food-related biomarkers and quantified the amount of variability in metabolite concentrations explained by non-dietary factors. Pregnant women (n = 600) from two Canadian birth cohorts completed a validated semi-quantitative food frequency questionnaire, and serum metabolites were measured by multisegment injection-capillary electrophoresis-mass spectrometry. Hierarchical linear modelling and principal component partial R-square (PC-PR2) were used for data analysis. For proline betaine and DHA (mainly exogenous), citrus foods and fish/fish oil intake, respectively, explained the highest proportion of variability relative to non-dietary factors. The unique contribution of dietary factors was similar (15:0, 17:0, hippuric acid, TMAO) or lower (14:0, tryptophan betaine, 3-methylhistidine, carnitine) compared to non-dietary factors (i.e., ethnicity, maternal age, gestational age, pre-pregnancy BMI, physical activity, and smoking) for metabolites that can either be produced endogenously, biotransformed by gut microbiota, and/or derived from multiple food sources. The results emphasize the importance of adjusting for non-dietary factors in future analyses to improve the accuracy and precision of the measures of food intake and their associations with health and disease.


Assuntos
Dieta , Metabolômica , Biomarcadores , Canadá , Feminino , Alimentos , Humanos , Metabolômica/métodos , Gravidez
19.
Anal Bioanal Chem ; 399(8): 2843-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21286689

RESUMO

Pharmacological chaperones (PCs) represent a promising therapeutic strategy for treatment of lysosomal storage disorders based on enhanced stabilization and trafficking of mutant protein upon orthosteric and/or allosteric binding. Herein, we introduce a simple yet reliable enzyme assay using capillary electrophoresis (CE) for inhibitor screening of PCs that target the lysosomal enzyme, ß-glucocerebrosidase (GCase). The rate of GCase-catalyzed hydrolysis of the synthetic substrate, 4-methylumbelliferyl-ß-D: -glucopyranoside was performed using different classes of PCs by CE with UV detection under standardized conditions. The pH and surfactant dependence of inhibitor binding on recombinant GCase activity was also examined. Enzyme inhibition studies were investigated for five putative PCs including isofagomine (IFG), ambroxol, bromhexine, diltiazem, and fluphenazine. IFG was confirmed as a potent competitive inhibitor of recombinant GCase with half-maximal inhibitory concentration (IC(50)) of 47.5 ± 0.1 and 4.6 ± 1.4 nM at pH 5.2 and pH 7.2, respectively. In contrast, the four other non-carbohydrate amines were demonstrated to function as mixed-type inhibitors with high micromolar activity at neutral pH relative to acidic pH conditions reflective of the lysosome. CE offers a convenient platform for characterization of PCs as a way to accelerate the clinical translation of previously approved drugs for oral treatment of rare genetic disorders, such as Gaucher disease.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese Capilar/métodos , Inibidores Enzimáticos/farmacologia , Glucosilceramidase/antagonistas & inibidores , Lisossomos/enzimologia , Chaperonas Moleculares/farmacologia , Inibidores Enzimáticos/química , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Humanos , Cinética , Chaperonas Moleculares/química
20.
Metabolites ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921143

RESUMO

Rates of pediatric Crohn's disease (CD) and ulcerative colitis (UC) are increasing globally. Differentiation of these inflammatory bowel disease (IBD) subtypes however can be challenging when relying on invasive endoscopic approaches. We sought to identify urinary metabolic signatures of pediatric IBD at diagnosis, and during induction treatment. Nontargeted metabolite profiling of urine samples from CD (n = 18) and UC (n = 8) in a pediatric retrospective cohort study was performed using multisegment injection-capillary electrophoresis-mass spectrometry. Over 122 urinary metabolites were reliably measured from pediatric IBD patients, and unknown metabolites were identified by tandem mass spectrometry. Dynamic changes in sum-normalized urinary metabolites were also monitored following exclusive enteral nutrition (EEN) or corticosteroid therapy (CS) in repeat urine samples collected over 8 weeks. Higher urinary excretion of indoxyl sulfate, hydroxyindoxyl sulfate, phenylacetylglutamine, and sialic acid were measured in CD as compared to UC patients, but lower threonine, serine, kynurenine, and hypoxanthine (p < 0.05). Excellent discrimination of CD from UC was achieved based on the urinary serine:indoxylsulfate ratio (AUC = 0.972; p = 3.21 × 10-5). Urinary octanoyl glucuronide, pantothenic acid, and pyridoxic acid were also identified as specific dietary biomarkers of EEN in pediatric IBD patients who achieved clinical remission. This work may complement or replace existing strategies in the diagnosis and early management of children with IBD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa