Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Brain ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39397771

RESUMO

Dysfunctional GABAergic and dopaminergic neurons are thought to exist in the ventral midbrain of patients with schizophrenia, yet transcriptional changes underpinning these abnormalities have not yet been localized to specific neuronal subsets. In the ventral midbrain, control over dopaminergic activity is maintained by both excitatory (glutamate) and inhibitory (GABA) input neurons. To further elucidate neuron pathology at the single-cell level, we characterized the transcriptional diversity of distinct NEUN+ populations in the human ventral midbrain and then tested for schizophrenia-associated changes in neuronal subset proportions and gene activity changes within neuronal subsets. Combining single nucleus RNA-sequencing with fluorescence-activated sorting of NEUN+ nuclei, we analysed 31,669 nuclei. Initially, we detected 18 transcriptionally distinct neuronal populations in the human ventral midbrain, including 2 "mixed" populations. The presence of neuronal populations in the midbrain was orthogonally validated with immunohistochemical stainings. "Mixed" populations contained nuclei expressing transcripts for vesicular glutamate transporter 2 (SLC17A6) and Glutamate Decarboxylase 2 (GAD2), but these transcripts were not typically co-expressed by the same nucleus. Upon more fine-grained subclustering of the 2 "mixed" populations, 16 additional subpopulations were identified that were transcriptionally classified as excitatory or inhibitory. In the midbrains of individuals with schizophrenia, we observed potential differences in the proportions of two (sub)populations of excitatory neurons, two subpopulations of inhibitory neurons, one "mixed" subpopulation, and one subpopulation of TH-expressing neurons. This may suggest that transcriptional changes associated with schizophrenia broadly affect excitatory, inhibitory, and dopamine neurons. We detected 99 genes differentially expressed in schizophrenia compared to controls within neuronal subpopulations identified from the 2 "mixed" populations, with the majority (67) of changes within small GABAergic neuronal subpopulations. Overall, single-nucleus transcriptomic analyses profiled a high diversity of GABAergic neurons in the human ventral midbrain, identified putative shifts in the proportion of neuronal subpopulations, and suggested dysfunction of specific GABAergic subpopulations in schizophrenia, providing directions for future research.

2.
Brain Behav Immun ; 115: 191-200, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37848096

RESUMO

BACKGROUND: Clinical trials of anti-inflammatories in schizophrenia do not show clear and replicable benefits, possibly because patients were not recruited based on elevated inflammation status. Interleukin 1-beta (IL-1ß) mRNA and protein levels are increased in serum, plasma, cerebrospinal fluid, and brain of some chronically ill patients with schizophrenia, first episode psychosis, and clinical high-risk individuals. Canakinumab, an approved anti-IL-1ß monoclonal antibody, interferes with the bioactivity of IL-1ß and interrupts downstream signaling. However, the extent to which canakinumab reduces peripheral inflammation markers, such as, high sensitivity C-reactive protein (hsCRP) and symptom severity in schizophrenia patients with inflammation is unknown. TRIAL DESIGN: We conducted a randomized, placebo-controlled, double-blind, parallel groups, 8-week trial of canakinumab in chronically ill patients with schizophrenia who had elevated peripheral inflammation. METHODS: Twenty-seven patients with schizophrenia or schizoaffective disorder and elevated peripheral inflammation markers (IL-1ß, IL-6, hsCRP and/or neutrophil to lymphocyte ratio: NLR) were randomized to a one-time, subcutaneous injection of canakinumab (150 mg) or placebo (normal saline) as an adjunctive antipsychotic treatment. Peripheral blood hsCRP, NLR, IL-1ß, IL-6, IL-8 levels were measured at baseline (pre injection) and at 1-, 4- and 8-weeks post injection. Symptom severity was assessed at baseline and 4- and 8-weeks post injection. RESULTS: Canakinumab significantly reduced peripheral hsCRP over time, F(3, 75) = 5.16, p = 0.003. Significant hsCRP reductions relative to baseline were detected only in the canakinumab group at weeks 1, 4 and 8 (p's = 0.0003, 0.000002, and 0.004, respectively). There were no significant hsCRP changes in the placebo group. Positive symptom severity scores were significantly reduced at week 8 (p = 0.02) in the canakinumab group and week 4 (p = 0.02) in the placebo group. The change in CRP between week 8 and baseline (b = 1.9, p = 0.0002) and between week 4 and baseline (b = 6.0, p = 0.001) were highly significant predictors of week 8 change in PANSS Positive Symptom severity scores. There were no significant changes in negative symptoms, general psychopathology or cognition in either group. Canakinumab was well tolerated and only 7 % discontinued. CONCLUSIONS: Canakinumab quickly reduces peripheral hsCRP serum levels in patients with schizophrenia and inflammation; after 8 weeks of canakinumab treatment, the reductions in hsCRP are related to reduced positive symptom severity. Future studies should consider increased doses or longer-term treatment to confirm the potential benefits of adjunctive canakinumab in schizophrenia. Australian and New Zealand Clinical Trials Registry number: ACTRN12615000635561.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Proteína C-Reativa/análise , Anticorpos Monoclonais/uso terapêutico , Interleucina-6 , Austrália , Inflamação/tratamento farmacológico , Doença Crônica , Método Duplo-Cego , Resultado do Tratamento
3.
Brain Behav Immun ; 111: 186-201, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958512

RESUMO

In addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events. Here, we investigate how mRNA and protein levels of key cytokines and cytokine receptors change during postnatal development of the human prefrontal cortex. We find that most cytokine transcripts investigated (IL1B, IL18, IL6, TNF, IL13) are lowest at birth and increase between 1.5 and 5 years old. After 5 years old, transcriptional patterns proceeded in one of two directions: decreased expression in teens and young adults (IL1B, p = 0.002; and IL18, p = 0.004) or increased mean expression with maturation, particularly in teenagers (IL6, p = 0.004; TNF, p = 0.002; IL13, p < 0.001). In contrast, cytokine proteins tended to remain elevated after peaking significantly around 3 years of age (IL1B, p = 0.012; IL18, p = 0.026; IL6, p = 0.039; TNF, p < 0.001), with TNF protein being highest in teenagers. An mRNA-only analysis of cytokine receptor transcripts found that early developmental increases in cytokines were paralleled by increases in their ligand-binding receptor subunits, such as IL1R1 (p = 0.033) and IL6R (p < 0.001) transcripts. In contrast, cytokine receptor-associated signaling subunits, IL1RAP and IL6ST, did not change significantly between age groups. Of the two TNF receptors, the 'pro-death' TNFRSF1A and 'pro-survival' TNFRSF1B, only TNFRSF1B was significantly changed (p = 0.028), increasing first in toddlers and again in young adults. Finally, the cytokine inhibitor, IL13, was elevated first in toddlers (p = 0.006) and again in young adults (p = 0.053). While the mean expression of interleukin-1 receptor antagonist (IL1RN) was highest in toddlers, this increase was not statistically significant. The fluctuations in cytokine expression reported here support a role for increases in specific cytokines at two different stages of human cortical development. The first is during the toddler/preschool period (IL1B, IL18, and IL13), and the other occurs at adolescence/young adult maturation (IL6, TNF and IL13).


Assuntos
Citocinas , Interleucina-6 , Feminino , Gravidez , Recém-Nascido , Adulto Jovem , Adolescente , Humanos , Pré-Escolar , Lactente , Citocinas/metabolismo , Interleucina-6/metabolismo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Córtex Pré-Frontal Dorsolateral , Interleucina-13 , Interleucina-18/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , RNA Mensageiro
4.
Brain Behav Immun ; 113: 166-175, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423513

RESUMO

OBJECTIVE: Immune system dysfunction is hypothesised to contribute to structural brain changes through aberrant synaptic pruning in schizophrenia. However, evidence is mixed and there is a lack of evidence of inflammation and its effect on grey matter volume (GMV) in patients. We hypothesised that inflammatory subgroups can be identified and that the subgroups will show distinct neuroanatomical and neurocognitive profiles. METHODS: The total sample consisted of 1067 participants (chronic patients with schizophrenia n = 467 and healthy controls (HCs) n = 600) from the Australia Schizophrenia Research Bank (ASRB) dataset, together with 218 recent-onset patients with schizophrenia from the external Benefit of Minocycline on Negative Symptoms of Psychosis: Extent and Mechanism (BeneMin) dataset. HYDRA (HeterogeneitY through DiscRiminant Analysis) was used to separate schizophrenia from HC and define disease-related subgroups based on inflammatory markers. Voxel-based morphometry and inferential statistics were used to explore GMV alterations and neurocognitive deficits in these subgroups. RESULTS: An optimal clustering solution revealed five main schizophrenia groups separable from HC: Low Inflammation, Elevated CRP, Elevated IL-6/IL-8, Elevated IFN-γ, and Elevated IL-10 with an adjusted Rand index of 0.573. When compared with the healthy controls, the IL-6/IL-8 cluster showed the most widespread, including the anterior cingulate, GMV reduction. The IFN-γ inflammation cluster showed the least GMV reduction and impairment of cognitive performance. The CRP and the Low Inflammation clusters dominated in the younger external dataset. CONCLUSIONS: Inflammation in schizophrenia may not be merely a case of low vs high, but rather there are pluripotent, heterogeneous mechanisms at play which could be reliably identified based on accessible, peripheral measures. This could inform the successful development of targeted interventions.


Assuntos
Esquizofrenia , Humanos , Interleucina-6 , Interleucina-8 , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Aprendizado de Máquina Supervisionado
5.
Proc Natl Acad Sci U S A ; 117(46): 28743-28753, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139572

RESUMO

Mammalian brain glycome remains a relatively poorly understood area compared to other large-scale "omics" studies, such as genomics and transcriptomics due to the inherent complexity and heterogeneity of glycan structure and properties. Here, we first performed spatial and temporal analysis of glycome expression patterns in the mammalian brain using a cutting-edge experimental tool based on liquid chromatography-mass spectrometry, with the ultimate aim to yield valuable implications on molecular events regarding brain functions and development. We observed an apparent diversity in the glycome expression patterns, which is spatially well-preserved among nine different brain regions in mouse. Next, we explored whether the glycome expression pattern changes temporally during postnatal brain development by examining the prefrontal cortex (PFC) at different time point across six postnatal stages in mouse. We found that glycan expression profiles were dynamically regulated during postnatal developments. A similar result was obtained in PFC samples from humans ranging in age from 39 d to 49 y. Novel glycans unique to the brain were also identified. Interestingly, changes primarily attributed to sialylated and fucosylated glycans were extensively observed during PFC development. Finally, based on the vast heterogeneity of glycans, we constructed a core glyco-synthesis map to delineate the glycosylation pathway responsible for the glycan diversity during the PFC development. Our findings reveal high levels of diversity in a glycosylation program underlying brain region specificity and age dependency, and may lead to new studies exploring the role of glycans in spatiotemporally diverse brain functions.


Assuntos
Metabolismo dos Carboidratos , Polissacarídeos/biossíntese , Córtex Pré-Frontal/metabolismo , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Glicômica , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Córtex Pré-Frontal/crescimento & desenvolvimento , Adulto Jovem
6.
Brain Behav Immun ; 101: 423-434, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34808287

RESUMO

BACKGROUND: There is growing evidence for complement system involvement in the pathophysiology of schizophrenia, although the extent and magnitude of complement factor disturbances has not been fully reported. It also remains unclear whether complement abnormalities are characteristic of all patients with schizophrenia or whether they are representative of a subgroup of patients who show signs of heightened inflammation. The aim of the present study was to quantify and compare the levels of a range of complement factors, receptors and regulators in healthy controls and people with schizophrenia and to determine the extent to which the levels of these peripheral molecules relate to measures of brain structure, particularly cortical thickness. METHOD: Seventy-five healthy controls and 90 patients with schizophrenia or schizoaffective disorder were included in the study. Peripheral blood samples were collected from all participants and mRNA expression was quantified in 20 complement related genes, four complement proteins, as well as for four cytokines. T1-weighted structural MRI scans were acquired and analysed to determine cortical thickness measures. RESULTS: There were significant increases in peripheral mRNA encoding receptors (C5ar1, CR1, CR3a), regulators (CD55, C59) and protein concentrations (C3, C3b, C4) in people with schizophrenia relative to healthy controls. C4a expression was significantly increased in a subgroup of patients displaying elevated peripheral cytokine levels. A higher inflammation index score derived from mRNA expression patterns predicted reductions in cortical thickness in the temporal lobe (superior temporal gyrus, transverse temporal gyrus, fusiform gyrus, insula) in patients with schizophrenia and healthy controls. CONCLUSIONS: Analysis of all three major complement pathways supports increased complement activity in schizophrenia and also shows that peripheral C4a up-regulation is related to increased peripheral pro-inflammatory cytokines in healthy controls. Our region-specific, neuroimaging findings linked to an increased peripheral complement mRNA expression pattern suggests a role for complement in cortical thinning. Further studies are required to further clarify clinical and neurobiological consequences of aberrant complement levels in schizophrenia and related psychoses.


Assuntos
Esquizofrenia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Proteínas do Sistema Complemento , Citocinas/metabolismo , Humanos , Inflamação , Imageamento por Ressonância Magnética/métodos , RNA Mensageiro
7.
Mol Psychiatry ; 26(11): 6880-6895, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34059796

RESUMO

Neural stem cells in the human subependymal zone (SEZ) generate neuronal progenitor cells that can differentiate and integrate as inhibitory interneurons into cortical and subcortical brain regions; yet the extent of adult neurogenesis remains unexplored in schizophrenia and bipolar disorder. We verified the existence of neurogenesis across the lifespan by chartering transcriptional alterations (2 days-103 years, n = 70) and identifying cells indicative of different stages of neurogenesis in the human SEZ. Expression of most neural stem and neuronal progenitor cell markers decreased during the first postnatal years and remained stable from childhood into ageing. We next discovered reduced neural stem and neuronal progenitor cell marker expression in the adult SEZ in schizophrenia and bipolar disorder compared to controls (n = 29-32 per group). RNA sequencing identified increased expression of the macrophage marker CD163 as the most significant molecular change in schizophrenia. CD163+ macrophages, which were localised along blood vessels and in the parenchyma within 10 µm of neural stem and progenitor cells, had increased density in schizophrenia but not in bipolar disorder. Macrophage marker expression negatively correlated with neuronal progenitor marker expression in schizophrenia but not in controls or bipolar disorder. Reduced neurogenesis and increased macrophage marker expression were also associated with polygenic risk for schizophrenia. Our results support that the human SEZ retains the capacity to generate neuronal progenitor cells throughout life, although this capacity is limited in schizophrenia and bipolar disorder. The increase in macrophages in schizophrenia but not in bipolar disorder indicates that immune cells may impair neurogenesis in the adult SEZ in a disease-specific manner.


Assuntos
Células-Tronco Neurais , Esquizofrenia , Adulto , Criança , Humanos , Macrófagos , Neurogênese/fisiologia , Neurônios
8.
Mol Psychiatry ; 26(3): 849-863, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31168068

RESUMO

The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1ß, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1ß mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Mesencéfalo , Camundongos , Microglia , Gravidez , Esquizofrenia/genética
9.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628144

RESUMO

Early life stress shapes the developing brain and increases risk for psychotic disorders. Yet, it is not fully understood how early life stress impacts brain regions in dopaminergic pathways whose dysfunction can contribute to psychosis. Therefore, we investigated gene expression following early life stress in adult brain regions containing dopamine neuron cell bodies (substantia nigra, ventral tegmental area (VTA)) and terminals (dorsal/ventral striatum). Sprague-Dawley rats (14F, 10M) were separated from their mothers from postnatal days (PND) 2-14 for 3 h/day to induce stress, while control rats (12F, 10M) were separated for 15 min/day over the same period. In adulthood (PND98), brain regions were dissected, RNA was isolated and five glucocorticoid signalling-related and six brain-derived neurotrophic factor (Bdnf) mRNAs were assayed by qPCR in four brain regions. In the VTA, levels of glucocorticoid signalling-related transcripts differed in maternally separated rodents compared to controls, with the Fkbp5 transcript significantly lower and Ptges3 transcript significantly higher in stressed offspring. In the VTA and substantia nigra, maternally separated rodents had significantly higher Bdnf IIA and III mRNA levels than controls. By contrast, in the ventral striatum, maternally separated rodents had significantly lower expression of Bdnf I, IIA, IIC, IV and VI transcripts. Sex differences in Nr3c1, Bag1 and Fkbp5 expression in the VTA and substantia nigra were also detected. Our results suggest that early life stress has long-lasting impacts on brain regions involved in dopamine neurotransmission, changing the trophic environment and potentially altering responsiveness to subsequent stressful events in a sex-specific pattern.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Estresse Psicológico , Animais , Feminino , Masculino , Ratos , Gânglios da Base/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina/metabolismo , Glucocorticoides , Ratos Sprague-Dawley , Roedores/metabolismo , Estresse Psicológico/metabolismo
10.
Brain Behav Immun ; 95: 299-309, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838248

RESUMO

Deficits in brain morphology are one of the most widely replicated neuropathological features in schizophrenia-spectrum disorder (SSD), although their biological underpinnings remain unclear. Despite the existence of hypotheses by which peripheral inflammation may impact brain structure, few studies have examined this relationship in SSD. This study aimed to establish the relationship between peripheral markers of inflammation and brain morphology and determine whether such relationships differed across healthy controls and individuals with first episode psychosis (FEP) and chronic schizophrenia. A panel of 13 pro- and anti-inflammatory cytokines were quantified from serum in 175 participants [n = 84 Healthy Controls (HC), n = 40 FEP, n = 51 Chronic SCZ]. We first performed a series of permutation tests to identify the cytokines most consistently associated with brain structural regions. Using moderation analysis, we then determined the extent to which individual variation in select cytokines, and their interaction with diagnostic status, predicted variation in brain structure. We found significant interactions between cytokine level and diagnosis on brain structure. Diagnostic status significantly moderated the relationship of IFNγ, IL4, IL5 and IL13 with frontal thickness, and of IFNγ and IL5 and total cortical volume. Specifically, frontal thickness was positively associated with IFNγ, IL4, IL5 and IL13 cytokine levels in the healthy control group, whereas pro-inflammatory cytokines IFNγ and IL5 were associated with lower total cortical volume in the FEP group. Our findings suggest that while there were no relationships detected in chronic schizophrenia, the relationship between peripheral inflammatory markers and select brain regions are differentially impacted in FEP and healthy controls. Longitudinal investigations are required to determine whether the relationship between brain structure and peripheral inflammation changes over time.


Assuntos
Encéfalo/anatomia & histologia , Citocinas , Esquizofrenia , Encéfalo/diagnóstico por imagem , Humanos , Inflamação , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico por imagem
11.
Eur Arch Psychiatry Clin Neurosci ; 271(4): 595-607, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33760971

RESUMO

While the biological substrates of brain and behavioural changes in persons with schizophrenia remain unclear, increasing evidence implicates that inflammation is involved. In schizophrenia, including first-episode psychosis and anti-psychotic naïve patients, there are numerous reports of increased peripheral inflammation, cognitive deficits and neuropathologies such as cortical thinning. Research defining the relationship between inflammation and schizophrenia symptomatology and neuropathology is needed. Therefore, we analysed the level of C-reactive protein (CRP), a peripheral inflammation marker, and its relationship with cognitive functioning in a cohort of 644 controls and 499 schizophrenia patients. In a subset of individuals who underwent MRI scanning (99 controls and 194 schizophrenia cases), we tested if serum CRP was associated with cortical thickness. CRP was significantly increased in schizophrenia patients compared to controls, co-varying for age, sex, overweight/obesity and diabetes (p < 0.006E-10). In schizophrenia, increased CRP was mildly associated with worse performance in attention, controlling for age, sex and education (R =- 0.15, p = 0.001). Further, increased CRP was associated with reduced cortical thickness in three regions related to attention: the caudal middle frontal, the pars opercularis and the posterior cingulate cortices, which remained significant after controlling for multiple comparisons (all p < 0.05). Together, these findings indicate that increased peripheral inflammation is associated with deficits in cognitive function and brain structure in schizophrenia, especially reduced attention and reduced cortical thickness in associated brain regions. Using CRP as a biomarker of peripheral inflammation in persons with schizophrenia may help to identify vulnerable patients and those that may benefit from adjunctive anti-inflammatory treatments.


Assuntos
Esquizofrenia , Biomarcadores , Proteína C-Reativa/análise , Cognição , Humanos , Inflamação/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtornos Psicóticos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem
12.
Brain Behav Immun ; 88: 826-839, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32450195

RESUMO

The transcription factor nuclear factor kappa B (NF-κB) regulates the expression of many inflammatory genes that are overexpressed in a subset of people with schizophrenia. Transcriptional reduction in one NF-κB inhibitor, Human Immunodeficiency Virus Enhancer Binding Protein 2 (HIVEP2), is found in the brain of patients, aligning with evidence of NF-κB over-activity. Cellular co-expression of HIVEP2 and cytokine transcripts is a prerequisite for a direct effect of HIVEP2 on pro-inflammatory transcription, and we do not know if changes in HIVEP2 and markers of neuroinflammation are occurring in the same brain cell type. We performed in situ hybridisation on postmortem dorsolateral prefrontal cortex tissue to map and compare the expression of HIVEP2 and Serpin Family A Member 3 (SERPINA3), one of the most consistently increased inflammatory genes in schizophrenia, between schizophrenia patients and controls. We find that HIVEP2 expression is neuronal and is decreased in almost all grey matter cortical layers in schizophrenia patients with neuroinflammation, and that SERPINA3 is increased in the dorsolateral prefrontal cortex grey matter and white matter in the same group of patients. We are the first to map the upregulation of SERPINA3 to astrocytes and to some neurons, and find evidence to suggest that blood vessel-associated astrocytes are the main cellular source of SERPINA3 in the schizophrenia cortex. We show that a lack of HIVEP2 in mice does not cause astrocytic upregulation of Serpina3n but does induce its transcription in neurons. We speculate that HIVEP2 downregulation is not a direct cause of astrocytic pro-inflammatory cytokine synthesis in schizophrenia but may contribute to neuronally-mediated neuroinflammation.


Assuntos
Esquizofrenia , Animais , Citocinas , Proteínas de Ligação a DNA , Humanos , Camundongos , NF-kappa B , Esquizofrenia/genética , Especificidade da Espécie , Fatores de Transcrição
13.
Brain Behav Immun ; 89: 200-208, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32540151

RESUMO

Increased cytokines and increased intercellular adhesion molecule-1 (ICAM1) found in the schizophrenia prefrontal cortex and in the blood may relate to cognitive deficits. Endothelial ICAM1 regulates immune cell trafficking into the brain by binding to integrins located on the surface of leukocytes. Whether the circulating levels of the main ICAM1 adhesion partners, lymphocyte-function associated antigen-1 (LFA1) and complement receptor 3 (CR3), both integrins, are altered in schizophrenia is unknown. Gene expressions of ICAM1, LFA1 and CR3 were measured in leukocytes from 86 schizophrenia patients and 77 controls. Participants were also administered cognitive testing to determine the extent to which cognitive ability was related to molecular measures of leukocyte adhesion. This cohort was previously stratified into inflammatory subgroups based on circulating cytokine mRNAs; thus, gene expressions were analysed by diagnosis and by inflammatory subgroups. Previously measured plasma ICAM1 protein was elevated in "high inflammation" schizophrenia compared to both "high" and "low inflammation" controls while ICAM1 mRNA was unchanged in leukocytes. LFA1 mRNA was decreased and CR3 mRNA was increased in leukocytes from people with schizophrenia compared to controls. LFA1 mRNA levels were positively correlated with working memory and elevated soluble ICAM1 was negatively correlated with verbal memory in schizophrenia. Altogether, some of the cognitive deficits in schizophrenia may be associated with altered expression of molecules that regulate immune cell trafficking.


Assuntos
Esquizofrenia , Adesão Celular , Moléculas de Adesão Celular , Humanos , Molécula 1 de Adesão Intercelular/genética , Antígeno-1 Associado à Função Linfocitária
14.
Aust N Z J Psychiatry ; 52(7): 690-698, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28891319

RESUMO

OBJECTIVE: The glutathione (GSH) pathway is the main antioxidant system to protect against oxidative stress in the human brain. In this study, we tested whether molecular components of the GSH antioxidant system are changed in dorsolateral prefrontal cortex tissue from people with schizophrenia compared to controls. METHOD: The levels of total glutathione and reduced GSH were determined by fluorometric assay via quantifying thiols in extracts from frontal cortex of 68 people. Immunoblotting was used to measure levels of enzymes responsible for maintaining GSH, the glutamyl-cysteine ligase (GCL) catalytic subunit (GCLC) and the GSH peroxidase (GPx)-like protein ( n = 74). Quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to measure GCLC messenger RNA (mRNA) expression. RESULTS: Both total glutathione ( t(66) = 2.467, p = 0.016) and reduced GSH ( t(66) = 3.001, p = 0.004) levels were significantly less in people with schizophrenia than in controls. However, there were no significant differences in either GCLC-like protein ( t(72) = -1.077, p = 0.285) or GCLC mRNA expression ( t(71) = -0.376, p = 0.708) between people with schizophrenia and control subjects. There was also no significant difference of GPx-like protein levels between schizophrenia and controls ( t(72) = -0.060, p = 0.952). Moreover, no significant correlations of putative confounding factors with GSH changes were detected. DISCUSSION: These results suggest that people with schizophrenia have impaired GSH antioxidant capacity, alongside normal levels of key regulatory proteins.


Assuntos
Glutamato-Cisteína Ligase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Bancos de Tecidos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Eur J Neurosci ; 46(2): 1768-1778, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28612959

RESUMO

Neurogenesis in the subependymal zone (SEZ) declines across the human lifespan, and reduced local neurotrophic support is speculated to be a contributing factor. While tyrosine receptor kinase B (TrkB) signalling is critical for neuronal differentiation, maturation and survival, little is known about subependymal TrkB expression changes during postnatal human life. In this study, we used quantitative PCR and in situ hybridisation to determine expression of the cell proliferation marker Ki67, the immature neuron marker doublecortin (DCX) and both full-length (TrkB-TK+) and truncated TrkB receptors (TrkB-TK-) in the human SEZ from infancy to middle age (n = 26-35, 41 days to 43 years). We further measured TrkB-TK+ and TrkB-TK- mRNAs in the SEZ from young adulthood into ageing (n = 50, 21-103 years), and related their transcript levels to neurogenic and glial cell markers. Ki67, DCX and both TrkB splice variant mRNAs significantly decreased in the SEZ from infancy to middle age. In contrast, TrkB-TK- mRNA increased in the SEZ from young adulthood into ageing, whereas TrkB-TK+ mRNA remained stable. TrkB-TK- mRNA positively correlated with expression of neural precursor (glial fibrillary acidic protein delta and achaete-scute homolog 1) and glial cell markers (vimentin and pan glial fibrillary acidic protein). TrkB-TK+ mRNA positively correlated with expression of neuronal cell markers (DCX and tubulin beta 3 class III). Our results indicate that cells residing in the human SEZ maintain their responsiveness to neurotrophins; however, this capability may change across postnatal life. We suggest that TrkB splice variants may differentially influence neuronal and glial differentiation in the human SEZ.


Assuntos
Envelhecimento/metabolismo , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurogênese/fisiologia , Receptor trkB/metabolismo , Nicho de Células-Tronco/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Núcleo Caudado/crescimento & desenvolvimento , Núcleo Caudado/metabolismo , Estudos de Coortes , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Humanos , Lactente , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Adulto Jovem
16.
Brain Behav Immun ; 63: 8-20, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27423491

RESUMO

Maternal exposure to infectious agents during gestation has been identified as a significant risk factor for schizophrenia. Using a mouse model, past work has demonstrated that the gestational timing of the immune-activating event can impact the behavioural phenotype and expression of dopaminergic and glutamatergic neurotransmission markers in the offspring. In order to determine the inter-species generality of this effect to rats, another commonly used model species, the current study investigated the impact of a viral mimetic Poly (I:C) at either an early (gestational day 10) or late (gestational day 19) time-point on schizophrenia-related behaviour and neurotransmitter receptor expression in rat offspring. Exposure to Poly (I:C) in late, but not early, gestation resulted in transient impairments in working memory. In addition, male rats exposed to maternal immune activation (MIA) in either early or late gestation exhibited sensorimotor gating deficits. Conversely, neither early nor late MIA exposure altered locomotor responses to MK-801 or amphetamine. In addition, increased dopamine 1 receptor mRNA levels were found in the nucleus accumbens of male rats exposed to early gestational MIA. The findings from this study diverge somewhat from previous findings in mice with MIA exposure, which were often found to exhibit a more comprehensive spectrum of schizophrenia-like phenotypes in both males and females, indicating potential differences in the neurodevelopmental vulnerability to MIA exposure in the rat with regards to schizophrenia related changes.


Assuntos
Efeitos Tardios da Exposição Pré-Natal/imunologia , Esquizofrenia/imunologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Exposição Materna , Memória de Curto Prazo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Poli I-C/farmacologia , Gravidez , Ratos , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/etiologia
17.
BMC Neurosci ; 16: 4, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25886766

RESUMO

BACKGROUND: Testosterone attenuates postnatal hippocampal neurogenesis in adolescent male rhesus macaques through altering neuronal survival. While brain-derived neurotropic factor (BDNF)/ tyrosine kinase receptor B (TrkB) are critical in regulating neuronal survival, it is not known if the molecular mechanism underlying testosterone's action on postnatal neurogenesis involves changes in BDNF/TrkB levels. First, (1) we sought to localize the site of synthesis of the full length and truncated TrkB receptor in the neurogenic regions of the adolescent rhesus macaque hippocampus. Next, (2) we asked if gonadectomy or sex hormone replacement altered hippocampal BDNF and TrkB expression level in mammalian hippocampus (rhesus macaque and Sprague Dawley rat), and (3) if the relationship between BDNF/TrkB expression was altered depending on the sex steroid environment. RESULTS: We find that truncated TrkB mRNA+ cells are highly abundant in the proliferative subgranular zone (SGZ) of the primate hippocampus; in addition, there are scant and scattered full length TrkB mRNA+ cells in this region. Gonadectomy or sex steroid replacement did not alter BDNF or TrkB mRNA levels in young adult male rat or rhesus macaque hippocampus. In the monkey and rat, we find a positive correlation with cell proliferation and TrkB-TK+ mRNA expression, and this positive relationship was found only when sex steroids were present. CONCLUSIONS: We suggest that testosterone does not down-regulate neurogenesis at adolescence via overall changes in BDNF or TrkB expression. However, BDNF/TrkB mRNA appears to have a greater link to cell proliferation in the presence of circulating testosterone.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , RNA Mensageiro/metabolismo , Receptor trkB/metabolismo , Testosterona/metabolismo , Animais , Bromodesoxiuridina , Hipocampo/efeitos dos fármacos , Terapia de Reposição Hormonal , Imuno-Histoquímica , Hibridização In Situ , Antígeno Ki-67/metabolismo , Macaca mulatta , Masculino , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Orquiectomia , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia , Testosterona/administração & dosagem
18.
Australas Psychiatry ; 23(4): 422-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26023167

RESUMO

OBJECTIVE: To present the diagnosis course and sequelae of a case of anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, drawing attention to early psychiatric symptoms. METHOD: The literature on anti-NMDA encephalitis is reviewed and possible psychopathological mechanisms discussed. RESULT: New onset psychoses, presenting with the combination of hallucinations, dyskinesias and seizures and progressing to catatonia should be referred to neurology for consideration of anti-NMDA receptor encephalitis. CONCLUSION: Early diagnosis is important for a favourable prognosis.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/fisiopatologia , Progressão da Doença , Adolescente , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encefalite Antirreceptor de N-Metil-D-Aspartato/terapia , Feminino , Humanos
19.
Biochem J ; 452(3): 401-10, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23560799

RESUMO

Members of the ABCA (ATP-binding cassette subfamily A) family are characterized by their ability to transport lipids across cellular membranes and regulate lipid homoeostasis in the brain and peripheral tissues. ABCA8 is a little-known member of this subfamily that was originally cloned from human brain libraries and has no known function. In an effort to elucidate the role of ABCA8 in the brain we first undertook a comprehensive analysis of its expression in the human brain. ABCA8 was differentially expressed in multiple regions of adult human brains with significantly higher expression in oligodendrocyte-enriched white matter regions compared with grey matter cortical regions. We then assessed the impact of ABCA8 on sphingomyelin production in oligodendrocyte and showed that ABCA8 was able to significantly stimulate both sphingomyelin synthase 1 expression and sphingomyelin production. Furthermore, ABCA8 expression in the prefrontal cortex across the human life span correlated strongly with age-associated myelination, and the myelinating gene p25α was significantly up-regulated with ABCA8. The present study represents the first extensive expression and functional study of ABCA8 in the human brain and the results strongly suggest that ABCA8 regulates lipid metabolism in oligodendrocytes and potentially plays a role in myelin formation and maintenance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Oligodendroglia/metabolismo , Esfingomielinas/biossíntese , Transportadores de Cassetes de Ligação de ATP/biossíntese , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Bainha de Mielina/química , Bainha de Mielina/metabolismo , Oligodendroglia/química , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/fisiologia , Adulto Jovem
20.
Aust N Z J Psychiatry ; 48(8): 722-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24744400

RESUMO

OBJECTIVE: While schizophrenia may have a progressive component, the evidence for neurodegenerative processes as indicated by reactive astrocytes is inconclusive. We recently identified a subgroup of individuals with schizophrenia with increased expression of inflammatory markers in prefrontal cortex, and hypothesized that this subgroup would also have reactive astrocytes. METHOD: We measured glial fibrillary acidic protein (GFAP) mRNA by quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) and protein levels by immunoblotting in grey matter homogenate from 37 individuals with schizophrenia and 37 unaffected controls. We examined the morphology of GFAP-positive astrocytes in immunostained sections of middle frontal gyrus. We tested if GFAP expression or astrocyte morphology were altered in people with schizophrenia with increased expression of inflammatory markers. We used RNA-Seq data on a subset of patients and controls (n=20/group) to ascertain whether mRNA transcripts associated with astrogliosis were elevated in the individuals with active neuroinflammation. RESULTS: GFAP (mRNA and protein) levels and astrocyte morphology were not significantly different between people with schizophrenia and controls overall. However, individuals with schizophrenia with neuroinflammation had increased expression of GFAP mRNA (t(33)=2.978, p=0.005), hypertrophic astrocyte morphology (χ(2)(2)=6.281, p=0.043), and statistically significant elevated expression of three mRNA transcripts previously associated with astrogliosis. CONCLUSIONS: We found clear evidence of astrogliosis in a subset of people with schizophrenia. We suggest that the lack of astrogliosis reported in previous studies may be due to cohort differences in aetiopathology, illness stage, treatment exposure, or a failure to examine subsets of people with schizophrenia.


Assuntos
Astrócitos/fisiologia , Proteína Glial Fibrilar Ácida/análise , Inflamação/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/fisiopatologia , Adolescente , Adulto , Idoso , Biomarcadores/análise , Western Blotting , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/química , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa