Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
EMBO Rep ; 23(1): e52702, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34693625

RESUMO

TNF stimulation generates pro-survival signals through activation of NF-κB that restrict the build-in death signaling triggered by TNF. The competition between TNF-induced survival and death signals ultimately determines the fate of a cell. Here, we report the identification of Bclaf1 as a novel component of the anti-apoptotic program of TNF. Bclaf1 depletion in multiple cells sensitizes cells to TNF-induced apoptosis but not to necroptosis. Bclaf1 exerts its anti-apoptotic function by promoting the transcription of CFLAR, a caspase 8 antagonist, downstream of NF-κB activation. Bclaf1 binds to the p50 subunit of NF-κB, which is required for Bclaf1 to stimulate CFLAR transcription. Finally, in Bclaf1 siRNA administered mice, TNF-induced small intestine injury is much more severe than in control mice with aggravated signs of apoptosis and pyroptosis. These results suggest Bclaf1 is a key regulator in TNF-induced apoptosis, both in vitro and in vivo.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , NF-kappa B , Proteínas Repressoras , Fator de Necrose Tumoral alfa , Animais , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Intestino Delgado/lesões , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
2.
J Integr Neurosci ; 23(2): 31, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38419442

RESUMO

Stroke is the most common cerebrovascular disease and one of the leading causes of death and disability worldwide. The current conventional treatment for stroke involves increasing cerebral blood flow and reducing neuronal damage; however, there are no particularly effective therapeutic strategies for rehabilitation after neuronal damage. Therefore, there is an urgent need to identify a novel alternative therapy for stroke. Acupuncture has been applied in China for 3000 years and has been widely utilized in the treatment of cerebrovascular diseases. Accumulating evidence has revealed that acupuncture holds promise as a potential therapeutic strategy for stroke. In our present review, we focused on elucidating the possible mechanisms of acupuncture in the treatment of ischemic stroke, including nerve regeneration after brain injury, inhibition of inflammation, increased cerebral blood flow, and subsequent rehabilitation.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/terapia , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia
3.
J Integr Neurosci ; 23(4): 87, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38682221

RESUMO

Ischemic stroke (IS) remains a serious threat to human health. Neuroinflammatory response is an important pathophysiological process after IS. Circular RNAs (circRNAs), a member of the non-coding RNA family, are highly expressed in the central nervous system and widely involved in regulating physiological and pathophysiological processes. This study reviews the current evidence on neuroinflammatory responses, the role of circRNAs in IS and their potential mechanisms in regulating inflammatory cells, and inflammatory factors affecting IS damage. This review lays a foundation for future clinical application of circRNAs as novel biomarkers and therapeutic targets.


Assuntos
AVC Isquêmico , Doenças Neuroinflamatórias , RNA Circular , RNA Circular/metabolismo , Humanos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Doenças Neuroinflamatórias/metabolismo , Animais , Isquemia Encefálica/metabolismo
4.
Medicina (Kaunas) ; 59(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37512128

RESUMO

Objective: Accumulating evidence supports neuroprotective effects of regulatory T cells (Tregs) in response to brain injury. However, the precise mechanisms underlying the beneficial effects of Tregs on suppressing neuroinflammation after subarachnoid hemorrhage (SAH) remain unclear. Methods: We performed flow cytometry to detect the infiltration of Tregs into the brain at different time points after SAH. Behavioral tests, including Adhesive and Rotarod, were performed to assess neurological deficits in mice after SAH. Bulk RNA sequencing was used to investigate the transcriptomic change of Tregs infiltrating into the brain after SAH. qPCR was performed to verify the variation of inflammatory cytokines expression in the brain after Tregs exogenous infusion. FoxP3-DTR mice and Il10 gene KO mice were used to explore the mechanism of Tregs inhibiting neuron apoptosis after infiltrating the brain following SAH onset. Results: Peripheral Tregs infiltrated into the brain one day after SAH and gradually accumulated in the hemorrhagic hemisphere. An exogenous infusion of Tregs significantly improved the neurological function of mice after SAH, while poor recovery of neurological function was observed in Tregs depletion mice. Transcriptome sequencing data suggested that the immunosuppressive function of brain-infiltrated Tregs was significantly upregulated. qPCR showed that the expression of pro-inflammatory cytokines decreased in the brain of SAH mice after exogenous Tregs infusion. Bioinformatic analysis revealed that IL-10 and other cytokines secreted by brain-infiltrated Tregs were upregulated after SAH. Moreover, exogenous infusion of Il10 gene KO Tregs did not totally improve neurological function in SAH mice. Conclusions: Tregs infiltrated into the brain in the early stage after SAH and exerted neuroprotective effect by secreting IL-10 to suppress neuroinflammation and reduce neuron apoptosis.


Assuntos
Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Animais , Camundongos , Citocinas/metabolismo , Interleucina-10 , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/metabolismo , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/complicações , Linfócitos T Reguladores
5.
Medicina (Kaunas) ; 59(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37629751

RESUMO

Atherosclerosis (AS) is a disease dangerous to human health and the main pathological cause of ischemic cardiovascular diseases. Although its pathogenesis is not fully understood, numerous basic and clinical studies have shown that AS is a chronic inflammatory disease existing in all stages of atherogenesis. It may be a common link or pathway in the pathogenesis of multiple atherogenic factors. Inflammation is associated with AS complications, such as plaque rupture and ischemic cerebral infarction. In addition to inflammation, apoptosis plays an important role in AS. Apoptosis is a type of programmed cell death, and different apoptotic cells have different or even opposite roles in the process of AS. Unlike linear RNA, circular RNA (circRNA) a covalently closed circular non-coding RNA, is stable and can sponge miRNA, which can affect the stages of AS by regulating downstream pathways. Ultimately, circRNAs play very important roles in AS by regulating inflammation, apoptosis, and some other mechanisms. The study of circular RNAs can provide new ideas for the prediction, prevention, and treatment of AS.


Assuntos
Aterosclerose , Transtornos Cerebrovasculares , MicroRNAs , Humanos , RNA Circular/genética , Aterosclerose/genética , MicroRNAs/genética , Apoptose/genética , Proliferação de Células , Inflamação/genética
6.
J Neurochem ; 160(1): 113-127, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482541

RESUMO

Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.


Assuntos
Fármacos Neuroprotetores/farmacologia , Neuroesteroides/farmacologia , Acidente Vascular Cerebral , Animais , Humanos
7.
Cell Commun Signal ; 20(1): 26, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248060

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with high rates of recurrence and death. Surgical resection and ablation therapy have limited efficacy for patients with advanced HCC and poor liver function, so pharmacotherapy is the first-line option for those patients. Traditional antitumor drugs have the disadvantages of poor biological distribution and pharmacokinetics, poor target selectivity, high resistance, and high toxicity to nontargeted tissues. Recently, the development of nanotechnology has significantly improved drug delivery to tumor sites by changing the physical and biological characteristics of drugs and nanocarriers to improve their pharmacokinetics and biological distribution and to selectively accumulate cytotoxic agents at tumor sites. Here, we systematically review the tumor microenvironment of HCC and the recent application of nanotechnology in HCC. Video Abstract.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Microambiente Tumoral
8.
Cell Mol Life Sci ; 78(4): 1369-1392, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33067655

RESUMO

The neurological diseases primarily include acute injuries, chronic neurodegeneration, and others (e.g., infectious diseases of the central nervous system). Autophagy is a housekeeping process responsible for the bulk degradation of misfolded protein aggregates and damaged organelles through the lysosomal machinery. Recent studies have suggested that autophagy, particularly selective autophagy, such as mitophagy, pexophagy, ER-phagy, ribophagy, lipophagy, etc., is closely implicated in neurological diseases. These forms of selective autophagy are controlled by a group of important proteins, including PTEN-induced kinase 1 (PINK1), Parkin, p62, optineurin (OPTN), neighbor of BRCA1 gene 1 (NBR1), and nuclear fragile X mental retardation-interacting protein 1 (NUFIP1). This review highlights the characteristics and underlying mechanisms of different types of selective autophagy, and their implications in various forms of neurological diseases.


Assuntos
Autofagia/genética , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/genética , Proteínas de Ciclo Celular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Proteínas Nucleares/genética , Proteínas Quinases/genética , Proteínas de Ligação a RNA/genética , Ubiquitina-Proteína Ligases/genética
9.
Biochem Biophys Res Commun ; 554: 186-192, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33798946

RESUMO

Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are dynamic and multiprotein complexes implicated in a variety of important biochemical events. Due to alternative mRNA splicing, PML has at least six nuclear isoforms that share a common N-terminus but differ in their C-terminal regions. However, the unique role of each PML isoform is not clear. Here, we report the characterization of the deubiquitinase ataxin-3 as a specific binding partner of PML isoform II (PML-II). Ataxin-3 was identified as a potential binding protein of PML-II in a yeast-hybrid screen employing the unique C-terminal region of PML-II as bait. Ataxin-3 only binds to the C-terminal region of PML-II and not that of other PML isoforms. The interaction between ataxin-3 and PML-II was confirmed by co-immunoprecipition assays, and immunofluorescent microscopy revealed that PML-II and ataxin-3 were co-localized in PML-NBs. In addition, PML-II not only interacts with ataxin-3 with a normal range of poly-Q repeats (13Q), but also with a pathological form of ataxin-3 with extended poly-Q repeats (79Q). Importantly, the deubiquitinase activity of ataxin-3 was inhibited by PML-II. Our results suggest that PML-II may be a negative regulator of ataxin-3.


Assuntos
Ataxina-3/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Corpos de Inclusão Intranuclear/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteínas Repressoras/metabolismo , Processamento Alternativo , Ataxina-3/genética , Linhagem Celular Tumoral , Humanos , Proteína da Leucemia Promielocítica/genética , Ligação Proteica , Isoformas de Proteínas , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
10.
J Neuroinflammation ; 18(1): 2, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402181

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial/macrophage activation and neuroinflammation are key cellular events following TBI, but the regulatory and functional mechanisms are still not well understood. Myeloid-epithelial-reproductive tyrosine kinase (Mer), a member of the Tyro-Axl-Mer (TAM) family of receptor tyrosine kinases, regulates multiple features of microglial/macrophage physiology. However, its function in regulating the innate immune response and microglial/macrophage M1/M2 polarization in TBI has not been addressed. The present study aimed to evaluate the role of Mer in regulating microglial/macrophage M1/M2 polarization and neuroinflammation following TBI. METHODS: The controlled cortical impact (CCI) mouse model was employed. Mer siRNA was intracerebroventricularly administered, and recombinant protein S (PS) was intravenously applied for intervention. The neurobehavioral assessments, RT-PCR, Western blot, magnetic-activated cell sorting, immunohistochemistry and confocal microscopy analysis, Nissl and Fluoro-Jade B staining, brain water content measurement, and contusion volume assessment were performed. RESULTS: Mer is upregulated and regulates microglial/macrophage M1/M2 polarization and neuroinflammation in the acute stage of TBI. Mechanistically, Mer activates the signal transducer and activator of transcription 1 (STAT1)/suppressor of cytokine signaling 1/3 (SOCS1/3) pathway. Inhibition of Mer markedly decreases microglial/macrophage M2-like polarization while increases M1-like polarization, which exacerbates the secondary brain damage and sensorimotor deficits after TBI. Recombinant PS exerts beneficial effects in TBI mice through Mer activation. CONCLUSIONS: Mer is an important regulator of microglial/macrophage M1/M2 polarization and neuroinflammation, and may be considered as a potential target for therapeutic intervention in TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Polaridade Celular/fisiologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , c-Mer Tirosina Quinase/biossíntese , Animais , Lesões Encefálicas Traumáticas/prevenção & controle , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
PLoS Pathog ; 15(1): e1007559, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682178

RESUMO

Type I interferon response plays a prominent role against viral infection, which is frequently disrupted by viruses. Here, we report Bcl-2 associated transcription factor 1 (Bclaf1) is degraded during the alphaherpesvirus Pseudorabies virus (PRV) and Herpes simplex virus type 1 (HSV-1) infections through the viral protein US3. We further reveal that Bclaf1 functions critically in type I interferon signaling. Knockdown or knockout of Bclaf1 in cells significantly impairs interferon-α (IFNα) -mediated gene transcription and viral inhibition against US3 deficient PRV and HSV-1. Mechanistically, Bclaf1 maintains a mechanism allowing STAT1 and STAT2 to be efficiently phosphorylated in response to IFNα, and more importantly, facilitates IFN-stimulated gene factor 3 (ISGF3) binding with IFN-stimulated response elements (ISRE) for efficient gene transcription by directly interacting with ISRE and STAT2. Our studies establish the importance of Bclaf1 in IFNα-induced antiviral immunity and in the control of viral infections.


Assuntos
Interferons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Virais/metabolismo , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/patogenicidade , Animais , Antivirais/farmacologia , Linhagem Celular , China , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade alfa/metabolismo , Interferon-alfa/metabolismo , Interferons/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/fisiologia , Elementos de Resposta , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais/imunologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Virais/genética , Viroses/genética
12.
BMC Neurosci ; 22(1): 15, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750300

RESUMO

BACKGROUND: Rupture of intracranial aneurysm (IA) is the main cause of devastating subarachnoid hemorrhage, which urges our understanding of the pathogenesis and regulatory mechanisms of IA. However, the regulatory roles of long non-coding RNAs (lncRNAs) in IA is less known. RESULTS: We processed the raw SRR files of 12 superficial temporal artery (STA) samples and 6 IA samples to count files. Then the differentially expressed (DE) mRNAs, miRNAs, and lncRNAs between STAs and IAs were identified. The enrichment analyses were performed using DEmRNAs. Next, a lncRNA-miRNA-mRNA regulatory network was constructed using integrated bioinformatics analysis. In summary, 341 DElncRNAs, 234 DEmiRNAs, and 2914 DEmRNAs between the STA and IA. The lncRNA-miRNA-mRNA regulatory network of IA contains 91 nodes and 146 edges. The subnetwork of hub lncRNA PVT1 was extracted. The expression level of PVT1 was positively correlated with a majority of the mRNAs in its subnetwork. Moreover, we found that several mRNAs (CCND1, HIF1A, E2F1, CDKN1A, VEGFA, COL1A1 and COL5A2) in the PVT1 subnetwork served as essential components in the PI3K-Akt signaling pathway, and that some of the non-coding RNAs (ncRNAs) (PVT1, HOTAIR, hsa-miR-17, hsa-miR-142, hsa-miR-383 and hsa-miR-193b) interacted with these mRNAs. CONCLUSION: Our annotations noting ncRNA's role in the pathway may uncover novel regulatory mechanisms of ncRNAs and mRNAs in IA. These findings provide significant insights into the lncRNA regulatory network in IA.


Assuntos
Aneurisma Roto , Redes Reguladoras de Genes , Aneurisma Intracraniano , RNA Longo não Codificante , Aneurisma Roto/genética , Aneurisma Roto/patologia , Humanos , Aneurisma Intracraniano/genética , Aneurisma Intracraniano/patologia , MicroRNAs , RNA Mensageiro
13.
Cell Commun Signal ; 19(1): 11, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509214

RESUMO

Tyro3, Axl, and Mertk (TAM) receptors are a subfamily of receptor tyrosine kinases. TAM receptors have been implicated in mediating efferocytosis, regulation of immune cells, secretion of inflammatory factors, and epithelial-to-mesenchymal transition in the tumor microenvironment, thereby serving as a critical player in tumor development and progression. The pro-carcinogenic role of TAM receptors has been widely confirmed, overexpression of TAM receptors is tied to tumor cells growth, metastasis, invasion and treatment resistance. Nonetheless, it is surprising to detect that inhibiting TAM signaling is not all beneficial in the tumor immune microenvironment. The absence of TAM receptors also affects anti-tumor immunity under certain conditions by modulating different immune cells, as the functional diversification of TAM signaling is closely related to tumor immunotherapy. Glioblastoma is the most prevalent and lethal primary brain tumor in adults. Although research regarding the crosstalk between TAM receptors and glioblastoma remains scarce, it appears likely that TAM receptors possess potential anti-tumor effects rather than portraying a total cancer-driving role in the context of glioblastoma. Accordingly, we doubt whether TAM receptors play a double-sided role in glioblastoma, and propose the Janus-faced TAM Hypothesis as a conceptual framework for comprehending the precise underlying mechanisms of TAMs. In this study, we aim to cast a spotlight on the potential multidirectional effects of TAM receptors in glioblastoma and provide a better understanding for TAM receptor-related targeted intervention. Video Abstract.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Receptores Proteína Tirosina Quinases/imunologia , Animais , Humanos
14.
Cell Commun Signal ; 19(1): 102, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635112

RESUMO

Glioma is the most common primary brain tumor and its prognosis is poor. Despite surgical removal, glioma is still prone to recurrence because it grows rapidly in the brain, is resistant to chemotherapy, and is highly aggressive. Therefore, there is an urgent need for a platform to study the cell dynamics of gliomas in order to discover the characteristics of the disease and develop more effective treatments. Although 2D cell models and animal models in previous studies have provided great help for our research, they also have many defects. Recently, scientific researchers have constructed a 3D structure called Organoids, which is similar to the structure of human tissues and organs. Organoids can perfectly compensate for the shortcomings of previous glioma models and are currently the most suitable research platform for glioma research. Therefore, we review the three methods currently used to establish glioma organoids. And introduced how they play a role in the diagnosis and treatment of glioma. Finally, we also summarized the current bottlenecks and difficulties encountered by glioma organoids, and the current efforts to solve these difficulties. Video Abstract.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Técnicas de Cultura de Células , Glioma/genética , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Organoides/metabolismo , Organoides/patologia , Prognóstico
15.
Pharmacol Res ; 163: 105299, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171306

RESUMO

Parthanatos is a PARP1-dependent, caspase-independent, cell-death pathway that is distinct from apoptosis, necrosis, or other known forms of cell death. Parthanatos is a multistep pathway that plays a pivotal role in tumorigenesis. There are many molecules in the parthanatos cascade that can be exploited to create therapeutic interventions for cancer management, including PARP1, PARG, ARH3, AIF, and MIF. These critical molecules are involved in tumor cell proliferation, progression, invasion, and metastasis. Therefore, these molecular signals in the parthanatos cascade represent promising therapeutic targets for cancer therapy. In addition, intimate interactions occur between parthanatos and other forms of cancer cell death, such as apoptosis and autophagy. Thus, co-targeting a combination of parthanatos and other death pathways may further provide a new avenue for cancer precision treatment. In this review, we elaborate on the signaling pathways of canonical parthanatos and briefly introduce the non-canonical parthanatos. We also shed light on the role parthanatos and its associated components play in tumorigenesis, particularly with respect to the aforementioned five molecules, and discuss the promise targeted therapy of parthanatos and its associated components holds for cancer therapy.


Assuntos
Neoplasias , Parthanatos , Animais , Carcinogênese , Humanos , Neoplasias/tratamento farmacológico
16.
Eur Radiol ; 31(3): 1290-1299, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32918092

RESUMO

OBJECTIVES: The basal vein of Rosenthal (BVR) variant is a potential origin of bleeding in angiogram-negative subarachnoid hemorrhage (AN-SAH). We compared the rate and degree of BVR variants in patients with perimesencephalic AN-SAH (PAN-SAH) and non-perimesencephalic AN-SAH (NPAN-SAH). METHODS: We retrospectively reviewed the records of AN-SAH patients admitted to our hospital between 2013 and 2018. The associations between variables (baseline characteristics, clinical and radiological data, and outcome) with bleeding patterns and degree of BVR variants were analyzed. Additionally, potential predictors of positive findings on repeated digital-subtracted angiogram (DSA), rebleeding, delayed cerebral infarction (DCI), and poor outcome were further studied. RESULTS: A total of 273 patients with AN-SAH were included. The incidence rate and degree of BVR variants were significantly higher in PAN-SAH patients compared with those in NPAN-SAH patients (p < 0.001). Patients with normal bilateral BVRs are more likely to have a severe prognosis and diffused blood distribution (p < 0.05). We found an increased rate of positive findings on repeated DSA, DCI, rebleeding, and poor outcome at 3 months and 1 year after discharge (all p < 0.05) in patients with bilateral normal BVRs. Bilateral normal BVRs were considered a risk factor (predictor) of positive findings on repeated DSA, rebleeding, and poor outcome (all p < 0.05). CONCLUSIONS: PAN-SAH patients have a higher rate and degree of BVR variants compared with patients with NPAN-SAH. Those AN-SAH patients with bilateral normal BVRs are more likely to be of arterial origin and are at risk of suffering from rebleeding and a poor outcome. KEY POINTS: • Patients with PAN-SAH have a higher rate and degree of BVR variants compared with patients with NPAN-SAH, which suggested that AN-SAH patients with normal BVRs are more likely to originate from arterial bleeding. • AN-SAH patients with normal BVRs are more likely to have positive findings on repeated DSA examinations, as well as an increased incidence of rebleeding and poor outcome, which may assist and guide neurologists in selecting treatment.


Assuntos
Veias Cerebrais , Hemorragia Subaracnóidea , Angiografia , Angiografia Cerebral , Drenagem , Humanos , Estudos Retrospectivos , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/epidemiologia
17.
J Cell Mol Med ; 24(19): 11070-11083, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827246

RESUMO

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL-related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non-malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non-neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro- and non-apoptosis effects in different neurological disorders and at different sites or stages. Its pro-apoptotic effect produces a pro-survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.


Assuntos
Doenças Neurodegenerativas/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Pesquisa Biomédica , Humanos , Modelos Biológicos , Transdução de Sinais
18.
J Cell Mol Med ; 24(16): 8918-8929, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32657030

RESUMO

Acute brain injury is the leading cause of human death and disability worldwide, which includes intracerebral haemorrhage, subarachnoid haemorrhage, cerebral ischaemia, traumatic brain injury and hypoxia-ischaemia brain injury. Currently, clinical treatments for neurological dysfunction of acute brain injury have not been satisfactory. Osteopontin (OPN) is a complex adhesion protein and cytokine that interacts with multiple receptors including integrins and CD44 variants, exhibiting mostly neuroprotective roles and showing therapeutic potential for acute brain injury. OPN-induced tissue remodelling and functional repair mainly rely on its positive roles in the coordination of pro-inflammatory and anti-inflammatory responses, blood-brain barrier maintenance and anti-apoptotic actions, as well as other mechanisms such as affecting the chemotaxis and proliferation of nerve cells. The blood OPN strongly parallel with the OPN induced in the brain and can be used as a novel biomarker of the susceptibility, severity and outcome of acute brain injury. In the present review, we summarized the molecular signalling mechanisms of OPN as well as its overall role in different kinds of acute brain injury.


Assuntos
Lesões Encefálicas/metabolismo , Osteopontina/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Transdução de Sinais/fisiologia
19.
J Cell Mol Med ; 24(7): 3901-3916, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32091665

RESUMO

Using molecular signatures, previous studies have defined glioblastoma (GBM) subtypes with different phenotypes, such as the proneural (PN), neural (NL), mesenchymal (MES) and classical (CL) subtypes. However, the gene programmes underlying the phenotypes of these subtypes were less known. We applied weighted gene co-expression network analysis to establish gene modules corresponding to various subtypes. RNA-seq and immunohistochemical data were used to validate the expression of identified genes. We identified seven molecular subtype-specific modules and several candidate signature genes for different subtypes. Next, we revealed, for the first time, that radioresistant/chemoresistant gene signatures exist only in the PN subtype, as described by Verhaak et al, but do not exist in the PN subtype described by Phillips et al PN subtype. Moreover, we revealed that the tumour cells in the MES subtype GBMs are under ER stress and that angiogenesis and the immune inflammatory response are both significantly elevated in this subtype. The molecular basis of these biological processes was also uncovered. Genes associated with alternative RNA splicing are up-regulated in the CL subtype GBMs, and genes pertaining to energy synthesis are elevated in the NL subtype GBMs. In addition, we identified several survival-associated genes that positively correlated with glioma grades. The identified intrinsic characteristics of different GBM subtypes can offer a potential clue to the pathogenesis and possible therapeutic targets for various subtypes.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neovascularização Patológica/genética , Transcriptoma/genética , Neoplasias Encefálicas/patologia , Estresse do Retículo Endoplasmático/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , Masculino , Mesoderma/patologia , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/genética , Neovascularização Patológica/patologia , Transcrição Gênica/genética
20.
Cell Commun Signal ; 18(1): 71, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370748

RESUMO

Efferocytosis is a physiologic phagocytic clearance of apoptotic cells, which modulates inflammatory responses and the immune environment and subsequently facilitates immune escape of cancer cells, thus promoting tumor development and progression. Efferocytosis is an equilibrium formed by perfect coordination among "find-me", "eat-me" and "don't-eat-me" signals. These signaling pathways not only affect the proliferation, invasion, metastasis, and angiogenesis of tumor cells but also regulate adaptive responses and drug resistance to antitumor therapies. Therefore, efferocytosis-related molecules and pathways are potential targets for antitumor therapy. Besides, supplementing conventional chemotherapy, radiotherapy and other immunotherapies with efferocytosis-targeted therapy could enhance the therapeutic efficacy, reduce off-target toxicity, and promote patient outcome. Video abstract.


Assuntos
Terapia de Imunossupressão/métodos , Neoplasias/terapia , Morte Celular Regulada , Animais , Apoptose , Progressão da Doença , Humanos , Inflamação , Neoplasias/imunologia , Fagocitose , Evasão Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa