RESUMO
Monocyte chemoattractant protein-1 (MCP-1) plays a crucial role in various inflammatory diseases. To reveal the impact of MCP-1 during diseases and to develop anti-inflammatory agents, we establish a transgenic mouse line. The firefly luciferase gene is incorporated into the mouse genome and driven by the endogenous MCP-1 promoter. A bioluminescence photographing system is applied to monitor luciferase levels in live mice during inflammation, including lipopolysaccharide-induced sepsis, concanavalin A-induced T cell-dependent liver injury, CCl 4-induced acute hepatitis, and liver fibrosis. The results demonstrate that the luciferase signal induced in inflammatory processes is correlated with endogenous MCP-1 expression in mice. Furthermore, the expressions of MCP-1 and the luciferase gene are dramatically inhibited by administration of the anti-inflammatory drug dexamethasone in a septicemia model. Our results suggest that the transgenic MCP-1-Luc mouse is a useful model to study MCP-1 expression in inflammation and disease and to evaluate the efficiency of anti-inflammatory drugs in vivo.
Assuntos
Anti-Inflamatórios , Quimiocina CCL2 , Camundongos , Animais , Quimiocina CCL2/genética , Anti-Inflamatórios/farmacologia , Camundongos Transgênicos , Inflamação/genética , Luciferases/genéticaRESUMO
BACKGROUND: Deciphering taxonomical structures based on high dimensional sequencing data is still challenging in metagenomics study. Moreover, the common workflow processed in this field fails to identify microbial communities and their effect on a specific disease status. Even the relationships and interactions between different bacteria in a microbial community keep unknown. RESULTS: MetaTopics can efficiently extract the latent microbial communities which reflect the intrinsic relations or interactions among several major microbes. Furthermore, a quantitative measurement, Quetelet Index, is defined to estimate the influence of a latent sub-community on a certain disease status for given samples. An analysis of our in-house oral metagenomics data and public gut microbe data was presented to demonstrate the application and usefulness of MetaTopics. To preset a user-friendly R package, we have built a dedicated website, https://github.com/bm2-lab/MetaTopics , which includes free downloads, detailed tutorials and illustration examples. CONCLUSIONS: MetaTopics is the first interactive R package to integrate the state-of-arts topic model derived from statistical learning community to analyze and visualize the metagenomics taxonomy data.
Assuntos
Biologia Computacional/métodos , Metagenoma , Metagenômica/métodos , Microbiota , Software , NavegadorRESUMO
Aristolochic acid (AA)-containing herbs have been prescribed for thousands of years as anti-inflammatory drugs, despite the active pharmaceutical ingredients remaining unclear. However, exposure to AAI and AAII has been proven to be a significant risk factor for severe nephropathy and carcinogenicity. AAIVa, an analogue abundant in AA-containing herbs, showed neither carcinogenicity nor nephrotoxicity in our study and other reports, implying that the pharmacological effects of AAIVa on inflammation are worth studying. Herein, we employed RAW 264.7 cells, the ear edema mouse model, and the lipopolysaccharide (LPS)-induced systematic inflammation model in TNF-IRES-Luc mice (tracking TNFα luciferase activities in real-time) to evaluate the anti-inframammary effect of AAIVa. Our results showed that AAIVa could decrease pro-inflammatory cytokines (TNFα and IL-6) production in LPS-stimulated RAW 264.7 cells, indicating its anti-inflammatory effects in vitro. Furthermore, the application of AAIVa (400 and 600 µg/ear) could significantly inhibit phorbol 12-myristate 13-acetate-induced ear edema, suggesting its topical anti-inflammatory activity in vivo. Moreover, LPS-stimulated TNF-IRES-Luc mice were used to investigate the onset and duration of AAIVa on systematic inflammation. A single dosage of AAIVa (100 mg/kg, i.g.) could suppress LPS-triggered inflammation, by decreasing luciferase activities of TNFα at 3 h in TNF-IRES-Luc mice. In addition, the online pharmacological databases predicted that AAIVa might target the regulation of T cell activation-related protein (ADA, ADORA2A, ERBB2) to exhibit anti-inflammatory effect. In conclusion, we demonstrated that AAIVa had anti-inflammatory effect for the first time; our findings are constructive for further studies on pharmacological mechanism of AAIVa.
Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , Luciferases/uso terapêuticoRESUMO
BACKGROUND/PURPOSE: Previous studies have suggested that there is a mutual antagonism between caries and periodontitis. This research aimed to investigate the ecological connection and bacterial interaction of these two diseases. MATERIALS AND METHODS: We profiled and analyzed the salivary microbiota from 124 individuals (including 38 caries patients, 34 periodontitis patients, 15 comorbid diseases patients, and 37 healthy controls) by using 16â¯S rRNA gene sequencing and bioinformatics approaches, and also quantified their salivary bacteria loads via quantitative real-time PCR. The putative biological functions of the salivary microbiome of the different groups were predicted by PICRUSt. RESULTS: We observed that both the total bacteria loads and the overall microbial richness in the saliva of the periodontitis group were higher than that in the healthy group. The principal coordinate analysis (PCoA) showed that the caries, periodontitis and healthy groups were separated from each other, and that the samples from comorbid diseases were located at the overlap of caries and periodontitis groups. Using LEfSe analysis, 20 differentially abundant genera were identified as potential biomarkers. These genera also performed complicated interactions among the four groups. Additionally, the PICRUSt analysis indicated caries-related and periodontitis-related functions (e.g., carbohydrate metabolism and bacteria proliferation) respectively. CONCLUSION: We disclosed the significant differences in the salivary bacterial community under caries, periodontitis and comorbid diseases. The periodontitis group was marked by the increased complexity of the salivary microbiota. The result may have vital clinical significance to the screening and early treatment of caries-active and periodontitis-active individuals.
RESUMO
Oral lichen planus (OLP) is a T cell-mediated common chronic inflammatory mucosal disease, with limited therapies available for long-term use. Previous study showed that ratio of genus Streptococcus decreased significantly in OLP patients when compared with controls. Buccal cotton swab samples of 43 OLP patients and 48 healthy individuals were collected for real-time quantitative polymerase chain reaction (RT-PCR) to investigate relative abundance alteration of Streptococcus salivarius in OLP lesions. Bacterial supernatants of S. salivarius ATCC® BAA-2593™ were collected by centrifugation and added to HSC-3 cells, and quantitative analysis of expression of IL-1ß, IL-6, IL-8, and TNF-α in the HSC-3 cells was determined by RT-PCR. Then, a randomized, non-blinded, controlled study was conducted. Forty patients with symptomatic OLP were randomly allocated into two groups and received topical treatment of 0.1% triamcinolone acetonide dental paste (group A) and S. salivarius K12 lozenge (group B), respectively, for 4 weeks. Sign scores, visual analogue scale (VAS), and adverse reactions were recorded. Relative abundance of S. salivarius in the OLP group was lower than that of control group (P < 0.05). After treated with 0.1% supernatants of S. salivarius ATCC® BAA-2593™, the expression level of IL-6 in the HSC-3 cells significantly reduced (P < 0.001), while IL-1ß, IL-8, and TNF- α showed a decreasing tendency (P > 0.05). There was significant reduction in sign scores and VAS scores in both groups after the 4-week treatment, with no significant difference between two groups. No adverse reaction was observed. S. salivarius might maintain local immune balance by inhibiting the NF-κB pathway. Topical application of Streptococcus salivarius K12 seemed to be effective in treatment of symptomatic OLP, especially with promising potential in long-term use. More detailed clinical studies with long follow-up period and standardized usage/dosage are expected to acquire definite conclusions.
Assuntos
Anti-Inflamatórios/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Líquen Plano Bucal/terapia , Mucosa Bucal/efeitos dos fármacos , Streptococcus salivarius/fisiologia , Administração Tópica , Adulto , Idoso , Linhagem Celular , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Líquen Plano Bucal/genética , Líquen Plano Bucal/imunologia , Líquen Plano Bucal/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/imunologia , Mucosa Bucal/patologia , NF-kappa B/genética , NF-kappa B/imunologia , Triancinolona Acetonida/uso terapêutico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Oral squamous cell carcinoma (OSCC) has been reported as the most prevalent cancer of the head and neck region, while early diagnosis remains challenging. Here we took a comprehensive bioinformatics study on microarray data of 326 OSCC clinical samples with control of 165 normal tissues. The cell interaction pathways of ECM-receptor interaction and focal adhesion were found to be significantly regulated in OSCC samples. Further analysis of the topological properties and expression consistency identified that three hub genes in the gene interaction network, MMP9, PDIA3 and BGH3, were consistently up-expressed in OSCC samples. When being validated on additional microarray datasets of 41 OSCC samples, the validation rate of over-expressed BGH3, MMP9, and PDIA3 reached 90%, 90% and 84% respectively. At last, immuno-histochemical assays were done to test the protein expression of the three genes on newly collected clinical samples of 35 OSCC, 20 samples of pre-OSCC stage, and 12 normal oral mucosa specimens. Their protein expression levels were also found to progressively increase from normal mucosa to pre-OSCC stage and further to OSCC (ANOVA p = 0.000), suggesting their key roles in OSCC pathogenesis. Based on above solid validation, we propose BGH3, MMP9 and PDIA3 might be further explored as potential biomarkers to aid OSCC diagnosis.
Assuntos
Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Metaloproteinase 9 da Matriz/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Bases de Dados Genéticas , Proteínas da Matriz Extracelular/genética , Humanos , Imuno-Histoquímica , Metaloproteinase 9 da Matriz/genética , Mucosa Bucal/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Isomerases de Dissulfetos de Proteínas/genética , Mapas de Interação de Proteínas , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Regulação para CimaRESUMO
Oral lichen planus (OLP) is a chronic inflammatory disease that affects oral mucosa, some of which may finally develop into oral squamous cell carcinoma. Therefore, pinpointing the molecular mechanisms underlying the pathogenesis of OLP is important to develop efficient treatments for OLP. Recently, the accumulation of the large amount of omics data, especially transcriptome data, provides opportunities to investigate OLPs from a systematic perspective. In this paper, assuming that the OLP associated genes have functional relationships, we present a new approach to identify OLP related gene modules from gene regulatory networks. In particular, we find that the gene modules regulated by both transcription factors (TFs) and microRNAs (miRNAs) play important roles in the pathogenesis of OLP and many genes in the modules have been reported to be related to OLP in the literature.