Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499075

RESUMO

Soil cadmium (Cd) contamination seriously reduces the production and product quality of Tartary buckwheat (Fagopyrum tataricum), and strategies are urgently needed to mitigate these adverse influences. Herein, we investigated the effect of salicylic acid (SA) on Tartary buckwheat seedlings grown in Cd-contaminated soil in terms of Cd tolerance and accumulation. The results showed that 75-100 µmol L-1 SA treatment enhanced the Cd tolerance of Tartary buckwheat, as reflected by the significant increase in plant height and root and shoot biomass, as well as largely mitigated oxidative stress. Moreover, 100 µmol L-1 SA considerably reduced the stem and leaf Cd concentration by 60% and 47%, respectively, which is a consequence of increased root biomass and root Cd retention with promoted Cd partitioning into cell wall and immobile chemical forms. Transcriptome analysis also revealed the upregulation of the genes responsible for cell wall biosynthesis and antioxidative activities in roots, especially secondary cell wall synthesis. The present study determines that 100 µmol L-1 is the best SA concentration for reducing Cd accumulation and toxicity in Tartary buckwheat and indicates the important role of root in Cd stress in this species.


Assuntos
Fagopyrum , Fagopyrum/genética , Cádmio/toxicidade , Plântula , Ácido Salicílico/farmacologia , Estresse Oxidativo
2.
Int J Mol Sci ; 20(14)2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337110

RESUMO

Buckwheat is an important functional food material with high nutritional value. However, it is still a difficult task for the taxonomy studies of wild buckwheat that are only based on morphology. In order to demonstrate the most efficient DNA barcode in the phylogenetic research of buckwheat, promote the investigation of wild buckwheat, and also reveal the phylogenetic relationship between Fagopyrum species, psbE-psbL and ndhA intron were validated here, which previously have been proved to be promising DNA barcode candidates for phylogenetic studies in genera Fagopyrum. Meanwhile, ndhA intron + psbE-psbL and matK + psbE-psbL could distinguish the relationship between species clearly. Combining the results of morphology and molecular markers, we suggested the buckwheat species should be divided into two subgroups, one subgroup consisted of F. tataricum, F. esculentum, F. cymosum and its related wild species, and the other subgroup included other wild buckwheat species. Our results could fulfill molecular markers of taxonomy research in genera Fagopyrum, promote wild buckwheat species identification, and assist in the use of wild buckwheat resources in the future. Additionally, the phylogenetic relationship revealed here could provide valuable information for molecular breeding of buckwheat and provide reference for inter-species hybridization.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas , Fagopyrum/classificação , Fagopyrum/genética , Genes de Plantas , Íntrons , Plastídeos/genética , Marcadores Genéticos , Fenótipo , Filogenia
3.
New Phytol ; 216(3): 814-828, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28722263

RESUMO

Little is known about the molecular mechanism of the R2R3-MYB transcriptional repressors involved in plant phenylpropanoid metabolism. Here, we describe one R2R3-type MYB repressor, FtMYB11 from Fagopyrum tataricum. It contains the SID-like motif GGDFNFDL and it is regulated by both the importin protein 'Sensitive to ABA and Drought 2' (SAD2) and the jasmonates signalling cascade repressor JAZ protein. Yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that FtMYB11 interacts with SAD2 and FtJAZ1. Protoplast transactivation assays demonstrated that FtMYB11 acts synergistically with FtSAD2 or FtJAZ1 and directly represses its target genes via the MYB-core element AATAGTT. Changing the Asp122 residue to Asn in the SID-like motif results in cytoplasmic localization of FtMYB11 because of loss of interaction with SAD2, while changing the Asp126 residue to Asn results in the loss of interaction with FtJAZ1. Overexpression of FtMYB11or FtMYB11D126N in F. tataricum hairy roots resulted in reduced accumulation of rutin, while overexpression of FtMYB11D122N in hairy roots did not lead to such a change. The results indicate that FtMYB11 acts as a regulator via interacting with FtSAD2 or FtJAZ1 to repress phenylpropanoid biosynthesis, and this repression depends on two conserved Asp residues of its SID-like motif.


Assuntos
Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Citoplasma/metabolismo , Fagopyrum/genética , Teste de Complementação Genética , Mutação , Fenilpropionatos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rutina/biossíntese , Rutina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant J ; 84(2): 395-403, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332741

RESUMO

Sub-group 4 R2R3-type MYB transcription factors, including MYB3, MYB4, MYB7 and MYB32, act as repressors in phenylpropanoid metabolism. These proteins contain the conserved MYB domain and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) repression domain. Additionally, MYB4, MYB7 and MYB32 possess a putative zinc-finger domain and a conserved GY/FDFLGL motif in their C-termini. The protein 'sensitive to ABA and drought 2' (SAD2) recognizes the nuclear pore complex, which then transports the SAD2-MYB4 complex into the nucleus. Here, we show that the conserved GY/FDFLGL motif contributes to the interaction between MYB factors and SAD2. The Asp → Asn mutation in the GY/FDFLGL motif abolishes the interaction between MYB transcription factors and SAD2, and therefore they cannot be transported into the nucleus and cannot repress their target genes. We found that MYB4(D261N) loses the capacity to repress expression of the cinnamate 4-hydroxylase (C4H) gene and biosynthesis of sinapoyl malate. Our results indicate conservation among MYB transcription factors in terms of their interaction with SAD2. Therefore, the Asp → Asn mutation may be used to engineer transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Mutação Puntual/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética
5.
Funct Integr Genomics ; 13(2): 241-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23474989

RESUMO

Plant annexins are Ca(2+)- and phospholipid-binding proteins forming an evolutionary conserved multi-gene family. They are implicated in the regulation of plant growth, development, and stress responses. With the availability of the maize genome sequence information, we identified 12 members of the maize annexin genes. Analysis of protein sequence and gene structure of maize annexins led to their classification into five different orthologous groups. Expression analysis by RT-PCR revealed that these genes are responsive to heavy metals (Ni, Zn, and Cd). The maize annexin genes were also found to be regulated by Ustilago maydis and jasmonic acid. Additionally, the promoter of the maize annexin gene was analyzed for the presence of different stress-responsive cis-elements, such as ABRE, W-box, GCC-box, and G-box. RT-PCR and microarray data show that all 12 maize annexin genes present differential, organ-specific expression patterns in the maize developmental steps. These results indicate that maize annexin genes may play important roles in the adaptation of plants to various environmental stresses.


Assuntos
Anexinas/genética , Ciclopentanos/farmacologia , Metais Pesados/toxicidade , Oxilipinas/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/genética , Sequência de Aminoácidos , Anexinas/química , Anexinas/metabolismo , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Zea mays/crescimento & desenvolvimento
6.
Funct Integr Genomics ; 13(2): 229-39, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23455933

RESUMO

Nicotianamine (NA) is an important divalent metal chelator and the main precursor of phytosiderophores. NA is synthesized from S-adenosylmethionine in a process catalyzed by nicotianamine synthase (NAS). In this study, a set of structural and phylogenetic analyses have been applied to identify the maize NAS genes based on the maize genome sequence release. Ten maize NAS genes have been mapped; seven of them have not been reported to date. Phylogenetic analysis and expression pattern from microarray data led to their classification into two different orthologous groups. C-terminal fusion of ZmNAS3 with GFP was found in the cytoplasm of Arabidopsis leaf protoplast. Expression analysis by reverse transcription polymerase chain reaction revealed ZmNAS genes are responsive to heavy metal ions (Ni, Fe, Cu, Mn, Zn, and Cd), and all 10 ZmNAS genes were only observed in the root tissue except of ZmNAS6. The promoter of ZmNAS genes was analyzed for the presence of different cis-element response to all kinds of phytohormones and environment stresses. We found that the ZmNAS gene expression of maize seedlings was regulated by jasmonic acid, abscisic acid, and salicylic acid. Microarray data demonstrated that the ZmNAS genes show differential, organ-specific expression patterns in the maize developmental steps. The integrated comparative analysis can improve our current view of ZmNAS genes and facilitate the functional characterization of individual members.


Assuntos
Alquil e Aril Transferases/genética , Genes de Plantas/genética , Metais Pesados/toxicidade , Família Multigênica , Reguladores de Crescimento de Plantas/farmacologia , Zea mays/enzimologia , Zea mays/genética , Biocatálise/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Modelos Moleculares , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Filogenia , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Homologia Estrutural de Proteína , Zea mays/efeitos dos fármacos
7.
J Basic Microbiol ; 53(2): 181-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22581711

RESUMO

The rutin degrading enzyme (RDE) was isolated and purified from tartary buckwheat seeds. The RDE was purified about 11.34-fold and its final yield was 3.5%, which was very low, due to our purification strategy of giving priority to purity over yield. The RDE molecular weight was estimated to be about 60 kDa. When rutin was used as substrate, an optimal enzyme activity was seen at around pH 5.0 and 40 °C. Strains isolation strategy characterized by the use of rutin as sole carbon source in enrichment cultures was used to isolate RDE-producing strains. Then the active strains were identified by morphology characterization and 18s rDNA-ITS (Internal Transcribed Spacer) gene sequencing. Three isolates coded as B3, W2, Y2 were successfully isolated from fusty Fagopyrum tataricum flour cultures. Strain B3 possessed the highest unit activity among these three strains, and its total activity reached up to 171.0 Unit. The active isolate (B3) could be assigned to Penicillium farinosum. When the Penicillium farinosum strains were added to tartary buckwheat flour cultures at pH 5.0, 30 °C after 5 days fermentation, the quercetin production raised up to 1.78 mg/l, almost 5.1 times higher than the fermentation without the above active strains. Hence, a new approach was available to utilize microorganism-aided fermentation for effective quercetin extraction from Fagopyrum tataricum seeds.


Assuntos
Enzimas/isolamento & purificação , Enzimas/metabolismo , Fagopyrum/enzimologia , Rutina/metabolismo , Biotransformação , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Enzimas/química , Concentração de Íons de Hidrogênio , Peso Molecular , Penicillium/classificação , Penicillium/genética , Penicillium/isolamento & purificação , Sementes/enzimologia , Análise de Sequência de DNA , Temperatura
8.
Glycobiology ; 22(12): 1775-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22879458

RESUMO

The raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, are synthesized by a set of distinct galactosyltransferases, which sequentially add galactose units to sucrose. The accumulation of RFOs in plant cells are closely associated with the responses to environmental factors, such as cold, heat and drought stresses. Systematic analysis of genes involved in the raffinose metabolism has not been reported to date. Searching the recently available working draft of the maize genome, six kinds of enzyme genes were speculated, which should encode all the enzymes involved in the raffinose metabolism in maize. Expression patterns of some related putative genes were analyzed. The conserved domains and phylogenetic relationships among the deduced maize proteins and their homologs isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as galactinol synthase (ZmGolS5, ZmGolS45 and ZmGolS37), raffinose synthase (ZmRS1, ZmRS2, ZmRS3 and ZmRS10), stachyose synthase (ZmRS8) and ß-fructofuranosidase, are encoded by multiple gene members with different expression patterns. These results reveal the complexity of the raffinose metabolism and the existence of metabolic channels for diverse RFOs in maize and provide useful information for improving maize stress tolerance through genetic engineering.


Assuntos
Galactosiltransferases/genética , Genoma de Planta , Rafinose/biossíntese , Zea mays/enzimologia , Dissacarídeos/metabolismo , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Filogenia , Estrutura Terciária de Proteína , Rafinose/metabolismo , Transcrição Gênica , Zea mays/genética , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
9.
Funct Integr Genomics ; 12(4): 683-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22983498

RESUMO

Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.


Assuntos
Aldeído Desidrogenase/genética , Família Multigênica , Zea mays/genética , Aldeído Desidrogenase/química , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica de Plantas , Filogenia , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , Análise de Sequência de DNA , Estresse Fisiológico , Zea mays/enzimologia
10.
Plants (Basel) ; 11(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406830

RESUMO

Metal tolerance proteins (MTP) as divalent cation transporters are essential for plant metal tolerance and homeostasis. However, the characterization and the definitive phylogeny of the MTP gene family in Fagopyrum tartaricum, and their roles in response to metal stress are still unknown. In the present study, MTP genes in Fagopyrum tartaricum were identified, and their phylogenetic relationships, structural characteristics, physicochemical parameters, as well as expression profiles under five metal stresses including Fe, Mn, Cu, Zn, and Cd were also investigated. Phylogenetic relationship analysis showed that 12 Fagopyrum tartaricum MTP genes were classified into three major clusters and seven groups. All FtMTPs had typical structural features of the MTP gene family and were predicted to be located in the cell vacuole. The upstream region of FtMTPs contained abundant cis-acting elements, implying their functions in development progress and stress response. Tissue-specific expression analysis results indicated the regulation of FtMTPs in the growth and development of Fagopyrum tataricum. Besides, the expression of most FtMTP genes could be induced by multiple metals and showed different expression patterns under at least two metal stresses. These findings provide useful information for the research of the metal tolerance mechanism and genetic improvement of Fagopyrum tataricum.

11.
Appl Microbiol Biotechnol ; 90(4): 1229-39, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21468707

RESUMO

In the past three decades, hairy roots research for the production of valuable biological active substances has received a lot of attention. The addition of knowledge to enhance the yields of desired substances and the development of novel tools for biomass engineering offer new possibilities for large-scale cultivation of the plant hairy root. Hairy roots can also produce recombinant proteins through the transfer of Agrobacterium T-DNA into the plant genome, and thereby hold immense potential for the pharmaceutical industry. This review highlights some of the significant progress made in the past few years and outlines future prospects for exploiting the potential utility of hairy root cultures as "chemical factories" for producing bioactive substances.


Assuntos
Fatores Biológicos/metabolismo , Engenharia Genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores Biológicos/genética , Células Cultivadas , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Appl Microbiol Biotechnol ; 91(4): 1095-105, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21590290

RESUMO

Catharanthus roseus (L.) G. Don is a plant species known for its production of a variety of terpenoid indole alkaloids, many of which have pharmacological activities. Production of catharanthine in cell cultures or in hairy roots established by transformation with Agrobacterium rhizogenes is of interest because catharanthine can be chemically coupled to the abundant leaf alkaloid vindoline to form the valuable anticancer drug vinblastine. Here, we observed a high amount of catharanthine in hairy roots of C. roseus, established by infecting leaf explants with the A. rhizogenes >agropine-type A4 strain carrying plasmid pRi. T-DNA transfer from plasmid pRi into hairy roots was confirmed by PCR for the essential T-DNA genes rolA and rolB and the agropine synthesis gene ags. The results suggest that integration of T-DNA into the plant DNA plays a positive role on the catharanthine pathway in C. roseus hairy roots. Furthermore, co-transformation with the soybean transcription factor GmMYBZ2 indicated that GmMYBZ2 reduces the catharanthine production by alteration of expression of a number of genes linked to the pathway. Transcription levels of the zinc-finger transcription factor 1 gene ZCT1 were high, and the transcription levels of the anthranilate synthase gene ASα, the strictosidine synthase gene STR, and the key transcription factor gene octadecanoid-responsive Catharanthus APETALA2/ethylene response factor were low. In addition, GmMYBZ2 had a negative effect on the gene expression levels of A-type cyclin CYSA and B-type cyclin CYSB, which was correlated with a reduced growth rate of the hairy roots.


Assuntos
Catharanthus/metabolismo , Regulação da Expressão Gênica , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Alcaloides de Vinca/metabolismo , Catharanthus/genética , DNA Bacteriano , Vetores Genéticos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmídeos , Rhizobium/genética , Glycine max/genética , Fatores de Transcrição/genética , Transformação Genética
13.
Plants (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685889

RESUMO

Buckwheat is a promising pseudo cereal and its cultivation history can be traced back to thousands of years ago in China. Nowadays, buckwheat is not only an ordinary crop but also a symbol of healthy life because of its rich nutritional and pharmacological properties. In this research, the current suitable areas of 19 wild buckwheat species were analyzed by the MaxEnt model, which proved that southwestern China was the diversity center of buckwheat. Their morphological characteristics and geographical distribution were analyzed for the first time. In addition, it was found that the change of buckwheat cultivation in three periods might be related to the green revolution of main crops and national policies. Meanwhile, the Sustainable Yield Index (SYI) value of buckwheat in China was the lowest from 1959 to 2016. Through the MaxEnt model, the potentially suitable areas of wild buckwheat would contract while cultivated buckwheat would expand under climate change. Accordingly, the diversity of wild buckwheat will decrease. Therefore, it is necessary to protect buckwheat resources as much as possible to strengthen the development and utilization of buckwheat resources. Moreover, the promotion of buckwheat diversity will be an important trade-off between food security, population growth, and land use under climate change.

14.
Appl Microbiol Biotechnol ; 88(3): 737-50, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20714717

RESUMO

Jasmonates and nitric oxide (NO) play important roles in the regulation of the signaling network leading to the biosynthesis of plant secondary metabolites. In this work, we explore the effect of constitutive overexpression of CrORCA3 (octadecanoid-responsive Catharanthus AP2/ERF domain), methyl jasmonate (MeJA), and sodium nitroprusside (SNP) on the differentiated tissue of Catharanthus roseus hairy roots. The changes in catharanthine concentration and in the levels of mRNA transcripts of pathway genes and regulators were tracked for 192 h. ORCA3 overexpression led to a slight decrease of the accumulation of catharanthine, while MeJA treatment caused a large increase in the levels of transcripts of pathway genes and the catharanthine concentration. SNP treatment alone or SNP in combination with MeJA treatment caused a dramatic decrease of the cathanranthine concentration, while at the same time the levels of transcripts of zinc finger-binding proteins genes (ZCTs) increased. The latter treatment also caused a decrease of the levels of transcripts of type-I protein prenyltransferase gene (PGGT-I). This response of transcriptional repressors and pathway genes may explain the antagonistic effects of NO and MeJA on catharanthine biosynthesis in C. roseus hairy roots.


Assuntos
Acetatos/metabolismo , Catharanthus/metabolismo , Ciclopentanos/metabolismo , Óxido Nítrico/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Alcaloides de Vinca/metabolismo , Vias Biossintéticas , Catharanthus/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reguladores , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética
15.
Plant Sci ; 294: 110440, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32234223

RESUMO

Fagopyrum cymosum has been considered as a traditional medicinal plant that belongs to Fagopyrum, which has exhibited great pharmaceutical potential due to its abundant flavonoid accumulation. The hairy roots induced by Agrobacterium rhizogenes has been utilized to produce valuable specialized metabolites or reveals plant metabolic processes, whereas the underlying regulatory networks of flavonoid biosynthesis in hairy roots of F. cymosum remained unexplored. Here, the regulatory transcription factor TrMYB4 cloned from Trifolium repens with purple striped leaves was considered to investigate the mechanism of flavonoids biosynthesis in hairy roots of F. cymosum. Results showed that the expression of key genes involved in rutin biosynthesis pathway from TrMYB4 hairy roots were significantly up-regulated compared with non-transgenic hairy roots, while the content of total flavonoids and rutin in TrMYB4 hairy roots also increased consistently. It revealed the TrMYB4 transcription factor could regulate the rutin biosynthesis in F. cymosum. Meanwhile, our research provided a theoretical reference for the industrial production of rutin using F. cymosum hairy roots.


Assuntos
Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Rutina/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Raízes de Plantas/genética , Fatores de Transcrição/genética
16.
ACS Omega ; 5(17): 9724-9732, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32391459

RESUMO

Tartary buckwheat tea (TBT) is the most popular and widely consumed buckwheat product in many countries. However, the perfect quality control standards for TBT were still lacking, and the content of heavy metals in TBT and their health risks to consumers were still unknown. In this research, the total phenolic content, total flavonoid content, and antioxidant capacity as well as six metal contents and their health risks in TBT were detected. The results showed that the total phenolic content, total flavonoid content, and antioxidant capacity varied significantly among different types of TBT. Meanwhile, six metal concentrations in TBT leaves and infusions decreased in the order of Zn, Cu, Cr, Ni, Pb, and Cd. Health risk assessment indicated that the heavy metal intake only from TBT would not cause a noncarcinogenic risk to consumers. However, a strong carcinogenic risk of Cr in TBT for consumers should be paid more attention.

17.
Biotechnol Appl Biochem ; 52(Pt 4): 313-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19281450

RESUMO

The Madagascar periwinkle [Catharanthus roseus (L.) G. Don] is a plant species known for its production of TIAs (terpenoid indole alkaloids), many of which are pharmaceutically important. Ajmalicine and serpentine are prescribed for the treatment of hypertension, whereas the bisindoles vinblastine, vincristine and 3',4'-anhydrovinblastine are used for their antineoplastic activity in the treatment of many cancers. However, TIAs are produced in small yields in C. roseus, which make them expensive. Cell and metabolic engineering has focused on increasing flux through the TIA pathway by various means, including optimization of medium composition, elicitation, construction of noval culture systems and introduction of genes encoding specific metabolic enzymes into the C. roseus genome. The present review will attempt to present the state-of-the-art of research in this area and provide an update on the cell and metabolic engineering of TIAs in C. roseus. We hope that this will contribute to a better understanding of the ways in which TIA production can be achieved in different C. roseus culture systems.


Assuntos
Catharanthus/fisiologia , Melhoramento Genético/métodos , Extratos Vegetais/genética , Extratos Vegetais/metabolismo , Engenharia de Proteínas/métodos , Alcaloides de Triptamina e Secologanina/metabolismo , Células Cultivadas , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/fisiologia
18.
Sci Total Environ ; 619-620: 621-629, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156280

RESUMO

To investigate the characteristics of heavy metals (Cr, Cd, Pb, Zn, Cu and Ni) in household dust in urban household environment of Chengdu, China, 90 household dust samples were collected from 6 districts of the city. The information of houses and residents were also recorded during dust sampling to identify the correlations between heavy metals in household dust and the house attributes. And also the principal component analysis and cluster analysis for sources and impactor factors. The concentrations of Pb (123mg·kg-1), Zn (675mg·kg-1), Cu (190mg·kg-1), Cr (82.7mg·kg-1), Cd (2.37mg·kg-1) and Ni (52.6mg·kg-1) in household dust are in low or moderate levels when compare with that from other counties or areas. The heavy metals of household dust samples from Chengdu is higher concentrations than that in the street dust from Chengdu, except for Cr. Statistical analysis result showed traffic sources and corrosion of alloys are important factors contributing to the rise concentrations of heavy metals in household dust. In addition, there is negative correlation (p<0.05) between the heavy metals concentrations and floor levels. The ingestion is the important pathway for Pb, Zn, Cu and Ni via household dust exposure to the residents, and the dermal contact was identified as a main route for Cr and Cd in household dust exposure to the residents. There are minor non-carcinogenic and carcinogenic risks from the heavy metals in household dust for the residents in Chengdu.


Assuntos
Poeira , Exposição Ambiental/análise , Metais Pesados/análise , China , Cidades , Monitoramento Ambiental , Humanos , Medição de Risco
19.
Sci Rep ; 7(1): 6514, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747666

RESUMO

Buckwheat is a nutritional and economically crop belonging to Polygonaceae, Fagopyrum. To better understand the mutation patterns and evolution trend in the chloroplast (cp) genome of buckwheat, and found sufficient number of variable regions to explore the phylogenetic relationships of this genus, two complete cp genomes of buckwheat including Fagopyrum dibotrys (F. dibotrys) and Fagopyrum luojishanense (F. luojishanense) were sequenced, and other two Fagopyrum cp genomes were used for comparative analysis. After morphological analysis, the main difference among these buckwheat were height, leaf shape, seeds and flower type. F. luojishanense was distinguishable from the cultivated species easily. Although the F. dibotrys and two cultivated species has some similarity, they different in habit and component contents. The cp genome of F. dibotrys was 159,320 bp while the F. luojishanense was 159,265 bp. 48 and 61 SSRs were found in F. dibotrys and F. luojishanense respectively. Meanwhile, 10 highly variable regions among these buckwheat species were located precisely. The phylogenetic relationships among four Fagopyrum species based on complete cp genomes was showed. The results suggested that F. dibotrys is more closely related to Fagopyrum tataricum. These data provided valuable genetic information for Fagopyrum species identification, taxonomy, phylogenetic study and molecular breeding.


Assuntos
Fagopyrum/anatomia & histologia , Fagopyrum/genética , Genoma de Cloroplastos , Genômica , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Fagopyrum/classificação , Flores/anatomia & histologia , Variação Genética , Filogenia , Folhas de Planta/anatomia & histologia , Sementes/anatomia & histologia , Análise de Sequência de DNA
20.
Sci Total Environ ; 586: 1076-1084, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28236483

RESUMO

Urban street dusts were collected in commercial area (CA), traffic area (TA), educational area (EA), residential area (RA) and parks area (PA) of Chengdu, China, to investigate the concentrations of heavy metals (Pb, Zn, Cu, Ni, Cd and Cr), and analyzed to evaluated possible sources and health risk assessment. The average concentrations (mg/kg) of Pb (82.3), Zn (296), Cu (100), Cd (1.66) and Cr (84.3) in urban street dusts were all higher than the local soil background values. The concentrations of heavy metals in each functional area could be classified as follows: CA>TA>RA>EA>PA. Principal component analysis and Cluster analysis showed mainly derived from the mixed sources of nature and traffic (51.7%). The results of health risk assessment showed no non-carcinogenic and carcinogenic risks of the metals for inhabitants. However, higher concentrations and oral bioaccessibility of the heavy metals in the dusts from CA and TA, indicating there was more health risks to the inhabitants in than that in other functional areas.


Assuntos
Poeira , Exposição Ambiental/análise , Monitoramento Ambiental , Metais Pesados/análise , China , Cidades , Humanos , Medição de Risco , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa