Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 181: 69-77, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176249

RESUMO

The rapid development of selenium-enriched agriculture leads to the accumulation of selenium in the soil, which has an adverse impact on terrestrial ecosystems. In the present study, the mortality, growth inhibition rate and metabolism of earthworms were examined to investigate the toxicological effects of sodium selenite (Na2SeO3) on earthworms (Eisenia fetida) after exposuring for 14 days (d). We used 1H-NMR-based metabolomics to identify sensitive biomarkers and explored the metabolic responses of earthworms exposed to Na2SeO3. The mortality and growth inhibition rate of earthworms exposed to 70 and 90 mg/kg Na2SeO3 were significantly higher than the rate of control group. The LC50 (the median lethal concentration) of Na2SeO3 was 57.4 mg/kg in this artificial soil test of E. fetida exposed to Na2SeO3 for 14 d. However, there was no significant differences when earthworms were exposed to different concentrations of Na2SeO3. The selected metabolic markers were ATP, lactic acid, leucine, alanine, valine, glycine, glutamic acid, lysine, α-glucose and betaine. Na2SeO3 affected the metabolic level of earthworms, as the percentage of metabolic markers in the earthworm changes when exposed to different concentrations of Na2SeO3. The metabolic disturbances were greater with increasing concentrations of Na2SeO3. The differential metabolic markers were significantly changed when exposed to Na2SeO3 comparing to those in the control group, affecting the tricarboxylic acid cycle process and breaking the metabolic balance. This study showed that Na2SeO3 had toxic effect on the growth and development of earthworms. In addition, this study provided a biochemical insights for the development of selenium-enriched agriculture.


Assuntos
Redes e Vias Metabólicas/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Selenito de Sódio/toxicidade , Poluentes do Solo/toxicidade , Solo/química , Animais , Biomarcadores/metabolismo , Relação Dose-Resposta a Droga , Dose Letal Mediana , Metabolômica , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
2.
Sci Total Environ ; 935: 173263, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38782267

RESUMO

The consistent input of antibiotics into aquatic environments may pose risks to various creatures and ecosystems. However, risk assessment of pharmaceuticals and personal care products (PPCPs) in aquatic environments is frequently limited by the lack of toxicity data. To investigate the risk of commonly used antibiotics to various aquatic creatures, we focused on the distribution patterns and temporal dynamics of antibiotics in the coastal estuary area of China and performed a comprehensive ecological risk assessment for four antibiotics: erythromycin (ERY), tetracycline (TCN), norfloxacin (NOR) and sulfamethoxazole (SMX). An interspecies correlation estimation (ICE)-species sensitivity distribution (SSD) combined model was applied to predict the toxicity data of untested aquatic species, and an accurate ecological risk assessment procedure was developed to evaluate the risk level of PPCPs. The results of risk quotient assessments and probabilistic risk assessments (PRAs) suggested that four objective antibiotics in the Chinese coastal estuary area were at a low risk level. These antibiotics posed a high risk in antibiotic-related global hot spots, with probabilistic risk values for ERY, NOR, SMX, and TCN of 81.33 %, 27.08 %, 21.13 %, and 15.44 %, respectively. We applied an extrapolation method to overcome the lack of toxicity data in ecological risk assessment, enhanced the ecological reality of water quality criteria derivation and reduced the uncertainty of risk assessment for antibiotics.


Assuntos
Antibacterianos , Monitoramento Ambiental , Poluentes Químicos da Água , China , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Antibacterianos/análise , Antibacterianos/toxicidade , Monitoramento Ambiental/métodos , Ecossistema , Estuários , Organismos Aquáticos/efeitos dos fármacos
3.
Environ Pollut ; 333: 122106, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364754

RESUMO

The concurrent existence of cadmium (Cd) and ciprofloxacin (CIP) in agricultural soils is very common, but presents a challenge to soil organisms. As more attention has been paid to the effect of toxic metals on the migration of antibiotic resistance genes, the critical role of the gut microbiota in CIP-modifying Cd toxicity in earthworms remains unclear. In this study, Eisenia fetida was exposed to Cd and CIP alone or in combination at environmentally relevant concentrations. Cd and CIP accumulation in earthworm increased as their respective spiked concentrations increased. In fact, Cd accumulation increased by 39.7% when 1 mg/kg CIP was added; however, the addition of Cd did not affect CIP uptake. Compared with exposure to Cd alone, a greater ingestion of Cd following combined exposure to Cd and 1 mg/kg CIP resulted in greater oxidative stress and energy metabolism disturbances in earthworms. The reactive oxygen species (ROS) contents and apoptosis rate of coelomocytes were more sensitive to Cd than these biochemical indicators. In fact, 1 mg/kg Cd induced the derivation of ROS. Similarly, the toxicity of Cd (5 mg/kg) to coelomocytes was promoted by CIP (1 mg/kg), ROS content in coelomocytes and the apoptosis rate increased by 29.2% and 113.1%, respectively, due to increased Cd accumulation. Further investigation of the gut microorganisms revealed that the decreased abundance of Streptomyces strains (known as Cd accumulation taxa) could be a critical factor for enhanced Cd accumulation and greater Cd toxicity to earthworms following exposure to both Cd and CIP; this was because this microorganism group was eliminated by the simultaneous ingestion of CIP. This study stressed the role of gut microorganisms in altering the toxicity of Cd and CIP combined contamination in soil organisms. More attention should be paid to the ecological risks of such combined contamination in soils.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Ciprofloxacina/farmacologia , Ciprofloxacina/metabolismo , Cádmio/análise , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/análise , Solo
4.
Sci Total Environ ; 901: 166371, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37604368

RESUMO

Soil heavy metal (HM) contamination around metal mining areas (MMAs) is a global concern that requires a cost-effective ecological risk assessment (ERA) method for preventive management. Traditional ERAs, comparing environmental HM concentrations with benchmarks, are labor- and cost-intensive in field investigations and chemical analyses, which challenge the management demands of numerous MMAs. In this study, a prospective ecological risk assessment method based on exposure and ecological scenario (ERA-EES) was developed to predict the eco-risk levels (low/medium/high) around MMAs prior to field sampling. Five exposure scenario indicators related to soil HM exposure and three ecological scenario indicators reflecting the soil bioreceptor response were selected and combined with the analytic hierarchy process and fuzzy comprehensive evaluation methods for ERA-EES development. Case application and performance evaluation with 67 MMAs in China demonstrated that the ERA-EES method had an overall effective and conservative performance when referring to potential ecological risk index (PERI) levels, with an accuracy of 0.87, kappa coefficient of 0.7, and low or medium eco-risk levels in PERI classified to high levels in ERA-EES. Overall, the selected scenario indicators could efficiently reflect the risk levels of soil HM pollution from mining activities. Besides, more regulatory efforts should be paid to the MMAs of nonferrous metals, underground and long-term mining and those located in southern China. This work provided a convenient and cost-effective prospective ERA method under the trend of ERA being tiered and refined, facilitating the risk management of various MMAs.

5.
Sci Total Environ ; 807(Pt 2): 150770, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624283

RESUMO

Se unevenly distributed in soils due to variations of geology and anthropogenic input, which results in different effects on earthworms. The effects of Se were characterized by analyzing the growth and metabolism responses of earthworms after exposure to three different concentrations of Na2SeO3. The results showed that except the possible growth promotion at 5 mg/kg, low and middle-level exposure to Na2SeO3 (0.3-10 mg/kg) did not significantly affect the growth of earthworms. While a significant inhibition effect on growth was observed in the high-level exposure group (30-70 mg/kg). There was an inflection point for Se performing promotion to inhibition effects on earthworm growth. To investigate the metabolic response of earthworms, a novel HPLC-ESI-MS (High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry) method was used to determine sensitive biomarkers. Selenium exposure significantly altered the metabolism of seven essential amino acids, namely tyrosine, leucine, phenylalanine, valine, alanine, glycine, and lysine, and two selenoamino acids, namely selenomethionine and methylselenocysteine. The overall metabolism level of earthworms was not affected at low exposure concentrations, but was affected at medium and high exposure concentrations. The metabolic pathways that integrated the selenocompound metabolism and the tricarboxylic acid cycle from the perspective of energy supply and demand were affected by Na2SeO3 exposure. The derived reactive oxygen species at high exposure concentrations were probably the reason for the growth inhibition effect of Se on earthworms. This study provides biochemical insights into the effects of Na2SeO3 on earthworms and suggests that an Se concentration of about 2.3 mg/kg is appropriate for soil organism health.


Assuntos
Oligoquetos , Selênio , Animais , Selênio/toxicidade
6.
J Hazard Mater ; 424(Pt C): 127570, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753647

RESUMO

Coastal ecosystem health is of vital importance to human well-being. Field investigations of major pollutants along the whole coast of China were carried out to explore associations between coastal development activities and pollutant inputs. Measurements of target pollutants such as PFAAs and PAHs uncovered notable levels in small estuary rivers. The Yangtze River was identified to deliver the highest loads of these pollutants to the seas as a divide for the spatial distribution of pollutant compositions. Soil concentrations of the volatile and semi-volatile pollutants showed a cold-trapping effect in pace with increasing latitudinal gradient. The coastal ecosystem is facing high ecological risks from metal pollution, especially copper (Cu) and zinc (Zn), while priority pollutants of high risks vary for different kinds of protected species, and the ecological risks were influenced by both climate and physicochemical properties of environmental matrices, which should be emphasized to protect and restore coastal ecosystem functioning.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Oceanos e Mares , Medição de Risco , Rios , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 698: 134221, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783436

RESUMO

Erythromycin, one of the most widely used macrolide antibiotics, has been detected in various aquatic environments, so erythromycin ecotoxicity should deserve more attention. In this study, blue mussels (Mytilus edulis) were exposed to erythromycin to explore its potential physiological toxicity. After 2d acute and 7d sub-acute exposure to erythromycin, blue mussel glutathione S-transferase (GST) and catalase (CAT) activities were determined with microplate methods and metabolic responses were analyzed using 1H nuclear magnetic resonance (1H NMR). The results revealed that GST was approximately 1.6 times higher in exposed mussels at 200 mg/L and higher concentrations. CAT was about 1.9 times higher in exposed mussels at 200 mg/L, indicating that erythromycin exposure led that blue mussels enhanced antioxidant responses. Low doses of erythromycin exposure had a relatively small impact on the metabolism, while high doses of erythromycin exposure (200 and 400 mg/L) disturbed metabolic balance. With the increase of erythromycin concentrations, the individual metabolic differences within the same treatment groups also increased. The significant increase in alanine, glutamate, taurine, glycine and betaine were observed after acute and subacute exposure. Betaine played an important role in protecting antioxidant enzyme activities through adjusting osmotic pressure. The metabolomic results also showed the modes of erythromycin acted on the energy metabolism, osmoregulation, nerve activities and amino acid metabolism. This study highlighted how metabolomics can provide a comprehensive picture of metabolic responses, although significant antioxidant and metabolic responses were observed at high exposure concentrations.


Assuntos
Antioxidantes/metabolismo , Eritromicina/toxicidade , Mytilus edulis/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Glutationa Transferase/metabolismo , Metabolômica , Mytilus , Estresse Oxidativo
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 208: 131-139, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30308397

RESUMO

A novel fluorescent probe, phenolphthalein­dialdehyde­(2­pyridyl) hydrazone (L), for sequentially detecting Al3+ and F- in almost 100% aqueous medium was successfully designed and synthesized. The probe offers two binding pockets for Al3+ to form a 1: 2 ligand/metal complex, leading to a significant fluorescence enhancement at 465 nm. Further, the in-situ formed L-Al complex acts as a secondary fluorescent chemosensor for F- by quenching the fluorescence of the complex with high selectivity. The detection limit for Al3+ and F- sensing is 2.28 nM and 0.13 µM, respectively, which are far below the World Health Organization (WHO) acceptable limits (7.41 µM for Al3+ ion and 79 µM for F-) in drinking water. The probe L was successfully applied to the detection of Al3+ and F- in cells using fluorescence microscopy.


Assuntos
Alumínio/análise , Corantes Fluorescentes/química , Fluoretos/análise , Fenolftaleína/química , Água/química , Ânions , Linhagem Celular Tumoral , Sobrevivência Celular , Corantes Fluorescentes/síntese química , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Environ Pollut ; 242(Pt A): 288-297, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29990936

RESUMO

Methodology to quantify and distinguish the spatial distribution of the risks from multiple pollutants within the region was developed in this paper. An integrated quantitative risk assessment was conducted by utilizing a large amount of information available to explore spatial distribution of risk by single and multiple pollutants, and the magnitude of the overall risk from multiple pollutants based on the current concentrations of pollutants and toxicity data. Two target criteria levels - level I (NOEC/LOEC based) and level II (LC/EC/IC50 based) - were employed, and thus, the regional and sub-regional risks were evaluated according to these two levels. The risk of multiple toxic metals (As, Cd, Cr, Hg and Pb) to a terrestrial ecosystem for the region around the Bohai Sea and the Yellow Sea were evaluated as a case. The total overall ecological risks from heavy metals in the region for level I and level II were 21.73% and 12.53%, respectively. The risks were ranked in the order of Cr > As > Pb > Cd > Hg with Cr posing the greatest ecological risk, which was 61.12% for level I. The top three cities according to the level II ecological risk were Cangzhou > Lianyungang > Panjin, while the top three cities of level I ecological risk were Cangzhou > Panjin > Lianyungang. This method provides a quantitative risk assessment with multiple and clear protection levels for risk management.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , China , Cidades , Ecologia , Ecossistema , Medição de Risco , Solo/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa