Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026012

RESUMO

Genome transcription and replication of influenza A virus (FluA), catalyzed by viral RNA polymerase (FluAPol), are delicately controlled across the virus life cycle. A switch from transcription to replication occurring at later stage of an infection is critical for progeny virion production and viral non-structural protein NS2 has been implicated in regulating the switch. However, the underlying regulatory mechanisms and the structure of NS2 remained elusive for years. Here, we determine the cryo-EM structure of the FluAPol-NS2 complex at ~3.0 Å resolution. Surprisingly, three domain-swapped NS2 dimers arrange three symmetrical FluPol dimers into a highly ordered barrel-like hexamer. Further structural and functional analyses demonstrate that NS2 binding not only hampers the interaction between FluAPol and the Pol II CTD because of steric conflicts, but also impairs FluAPol transcriptase activity by stalling it in the replicase conformation. Moreover, this is the first visualization of the full-length NS2 structure. Our findings uncover key molecular mechanisms of the FluA transcription-replication switch and have implications for the development of antivirals.

2.
J Virol ; 98(1): e0116623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054704

RESUMO

Both influenza A virus genome transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the influenza RNA polymerase (FluPol), are dynamically regulated across the virus life cycle. It has been reported that the last amino acid I121 of the viral NS2 protein plays a critical role in promoting viral genome replication in influenza mini-replicon systems. Here, we performed a 20 natural amino acid substitution screening at residue NS2-I121 in the context of virus infection. We found that the hydrophobicity of the residue 121 is essential for virus survival. Interestingly, through serial passage of the rescued mutant viruses, we further identified adaptive mutations PA-K19E and PB1-S713N on FluPol which could effectively compensate for the replication-promoting defect caused by NS2-I121 mutation in the both mini-replicon and virus infection systems. Structural analysis of different functional states of FluPol indicates that PA-K19E and PB1-S713N could stabilize the replicase conformation of FluPol. By using a cell-based NanoBiT complementary reporter assay, we further demonstrate that both wild-type NS2 and PA-K19E/PB1-S713N could enhance FluPol dimerization, which is necessary for genome replication. These results reveal the critical role NS2 plays in promoting viral genome replication by coordinating with FluPol.IMPORTANCEThe intrinsic mechanisms of influenza RNA polymerase (FluPol) in catalyzing viral genome transcription and replication have been largely resolved. However, the mechanisms of how transcription and replication are dynamically regulated remain elusive. We recently reported that the last amino acid of the viral NS2 protein plays a critical role in promoting viral genome replication in an influenza mini-replicon system. Here, we conducted a 20 amino acid substitution screening at the last residue 121 in virus rescue and serial passage. Our results demonstrate that the replication-promoting function of NS2 is important for virus survival and efficient multiplication. We further show evidence that NS2 and NS2-I121 adaptive mutations PA-K19E/PB1-S713N regulate virus genome replication by promoting FluPol dimerization. This work highlights the coordination between NS2 and FluPol in fulfilling efficient genome replication. It further advances our understanding of the regulation of viral RNA synthesis for influenza A virus.


Assuntos
Vírus da Influenza A , Proteínas não Estruturais Virais , Humanos , Substituição de Aminoácidos , Aminoácidos/genética , RNA Polimerases Dirigidas por DNA/genética , Vírus da Influenza A/genética , Influenza Humana/genética , Proteínas Virais/genética , Replicação Viral , Proteínas não Estruturais Virais/metabolismo
3.
J Virol ; 97(5): e0033723, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166301

RESUMO

In the influenza virus life cycle, viral RNA (vRNA) transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the viral RNA-dependent RNA polymerase in the host cell nucleus, are delicately controlled, and the levels of the three viral RNA species display very distinct synthesis dynamics. However, the underlying mechanisms remain elusive. Here, we demonstrate that in the context of virus infection with cycloheximide treatment, the expression of viral nonstructural protein 1 (NS1) can stimulate primary transcription, while the expression of viral NS2 inhibits primary transcription. It is known that the NS1 and NS2 proteins are expressed with different timings from unspliced and spliced mRNAs of the viral NS segment. We then simulated the synthesis dynamics of NS1 and NS2 proteins during infection by dose-dependent transfection experiments in ribonucleoprotein (RNP) reconstitution systems. We found that the early-expressed NS1 protein can stimulate viral mRNA synthesis, while the late-expressed NS2 protein can inhibit mRNA synthesis but can promote vRNA synthesis in a manner highly consistent with the dynamic changes in mRNA/vRNA in the virus life cycle. Furthermore, we observed that the coexistence of sufficient NS1 and NS2, close to the status of the NS1 and NS2 levels in the late stage of infection, could boost vRNA synthesis to the highest efficiency. We also identified key functional amino acids of NS1 and NS2 involved in these regulations. Together, we propose that the stoichiometric changes in the viral NS1 and NS2 proteins during infection are responsible for the fine regulation of viral RNA transcription and replication. IMPORTANCE In order to ensure efficient multiplication, influenza virus transcribes and replicates its segmented, negative-sense viral RNA genome in highly ordered dynamics across the virus life cycle. How the virus achieves such regulation remains poorly understood. Here, we demonstrate that the stoichiometric changes in the viral NS1 and NS2 proteins during infection could be responsible for the fine regulation of the distinct dynamics of viral RNA transcription and replication. We thus propose a fundamental mechanism exploited by influenza virus to dynamically regulate the synthesis of its viral RNA through the delicate control of viral NS1 and NS2 protein expression.


Assuntos
Vírus da Influenza A , Orthomyxoviridae , Proteínas não Estruturais Virais , Vírus da Influenza A/metabolismo , Orthomyxoviridae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
4.
Microb Pathog ; 160: 105193, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34536503

RESUMO

As a novel member of the Orthomyxoviridae, influenza D virus (IDV) was firstly isolated from swine. However, cattle were found to serve as its primary reservoir. The study of IDV emergence can shed light into the dynamics of zoonotic infections and interspecies transmission. Although there is an increasing number of strains and sequenced IDV strains, their origin, epidemiology and evolutionary dynamics remain unclear. In this study, we reconstruct the diversity and evolutionary dynamics of IDVs. Molecular detection of swine tissue samples shows that six IDV positive samples were identified in the Eastern China. Phylogenetic analyses suggest three major IDV lineages designated as D/Japan, D/OK and D/660 as well as intermediate lineages. IDVs show strong association with geographical location indicating a high level of local transmission, which suggests IDVs tend to establish a local lineage of in situ evolution. In addition, the D/OK lineage widely circulates in swine in Eastern China, and all of the Chinese virus isolates form a distinct sub-clade (D/China sub-lineage). Furthermore, we identified important amino acids in the HEF gene under positive selection that might affect its receptor binding cavity relevant for its broader cell tropism. The combined results highlight that more attention should be paid to the potential threat of IDV to livestock and farming in China.


Assuntos
Doenças dos Bovinos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animais , Bovinos , Evolução Molecular , Infecções por Orthomyxoviridae/veterinária , Filogenia , Suínos , Thogotovirus/genética
6.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992529

RESUMO

Novel H7N9 influenza virus transmitted from birds to human and, since March 2013, it has caused five epidemic waves in China. Although the evolution of H7N9 viruses has been investigated, the evolutionary changes associated with codon usage are still unclear. Herein, the codon usage pattern of two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), was studied to understand the evolutionary changes in relation to host, epidemic wave, and pathogenicity. Both genes displayed a low codon usage bias, with HA higher than NA. The codon usage was driven by mutation pressure and natural selection, although the main contributing factor was natural selection. Additionally, the codon adaptation index (CAI) and deoptimization (RCDI) illustrated the strong adaptability of H7N9 to Gallus gallus. Similarity index (SiD) analysis showed that Homo sapiens posed a stronger selection pressure than Gallus gallus. Thus, we assume that this may be related to the gradual adaptability of the virus to human. In addition, the host strong selection pressure was validated based on CpG dinucleotide content. In conclusion, this study analyzed the usage of codons of two genes of H7N9 and expanded our understanding of H7N9 host specificity. This aids into the development of control measures against H7N9 influenza virus.


Assuntos
Uso do Códon , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Adaptação ao Hospedeiro/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/genética , Influenza Humana/genética , Neuraminidase/genética , Animais , Galinhas/virologia , Códon , Ilhas de CpG/genética , Especificidade de Hospedeiro/genética , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Filogenia
7.
Medicine (Baltimore) ; 103(41): e40062, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39465826

RESUMO

The continuous increase in college students' use of the Internet and their mental health problems caused by a sedentary lifestyle, lack of exercise, and obesity have gradually attracted researchers' attention. There is still more work to be done to understand "how" and "under what circumstances" exercise motivation effects mental health, despite the fact that many of these studies have demonstrated that it has a significant impact on it. Four hundred forty-three college students in China were selected to participate in this study in order to explore the impact of exercise motivation on mental health. The mediating role of exercise adherence and the moderating role of sports apps using in this relationship. The results show that exercise motivation has a significant positive impact on college students' mental health; exercise adherence partially mediates the relationship between exercise motivation and mental health; and the relationship between exercise motivation and exercise adherence is moderated by sports apps using. Specifically, the relationship between exercise motivation and exercise adherence is stronger for college students with high sports apps using. This study is based on the Internet using to promote physical exercise to college students, thereby alleviating their psychological problems caused by a sedentary lifestyle, lack of exercise, and obesity in the Internet era. New ideas are also provided for intervention in college students' mental health.


Assuntos
Exercício Físico , Saúde Mental , Aplicativos Móveis , Motivação , Estudantes , Humanos , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Masculino , Feminino , Adulto Jovem , Exercício Físico/psicologia , Universidades , China , Adolescente , Adulto , Cooperação do Paciente/psicologia , Cooperação do Paciente/estatística & dados numéricos
8.
Viruses ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016441

RESUMO

Porcine viral diarrhea diseases affect the swine industry, resulting in significant economic losses. Porcine epidemic diarrhea virus (PEDV) genotypes G1 and G2, and groups A and C of the porcine rotavirus, are major etiological agents of severe gastroenteritis and profuse diarrhea, particularly among piglets, with mortality rates of up to 100%. Based on the high prevalence rate and frequent co-infection of PEDV, RVA, and RVC, close monitoring is necessary to avoid greater economic losses. We have developed a multiplex TaqMan probe-based real-time PCR for the rapid simultaneous detection and differentiation of PEDV subtypes G1 and G2, RVA, and RVC. This test is highly sensitive, as the detection limits were 20 and 100 copies/µL for the G1 and G2 subtypes of PEDV, respectively, and 50 copies/µL for RVA and RVC, respectively. Eighty-eight swine clinical samples were used to evaluate this new test. The results were 100% in concordance with the standard methods. Since reassortment between porcine and human rotaviruses has been reported, this multiplex test not only provides a basis for the management of swine diarrheal viruses, but also has the potential to impact public health as well.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Rotavirus , Doenças dos Suínos , Animais , Infecções por Coronavirus/veterinária , Diarreia/diagnóstico , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Rotavirus/genética , Rotavirus/isolamento & purificação , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia
9.
Rev. psicol. deport ; 32(3): 119-128, Sept 3, 2023. ilus, tab, graf
Artigo em Inglês | IBECS (Espanha) | ID: ibc-227449

RESUMO

This study reports on the cognitive and psychological attributes of language comprehension during cultural exchange among athletes (N = 20) from the United States, Great Britain, and Brazil. The research examined the linguistic significance of American English in a global marketplace, with particular attention to cross-cultural communication among those who speak U.S. English natively but must succeed in internationally competitive contexts. The major results demonstrated that while speaking their mother tongue, individuals were typically more confident and less likely to feel ashamed than when using their individual second language (English). Athletes were also shown to have no trouble distinguishing between languages, as they were able to recognise certain terms in both Spanish and Portuguese despite not being competent in either language. The results were understood to mean that, despite not being competent in a second language, athletes kept their capacity to think and converse about the world in an English-language framework.(AU)


Assuntos
Humanos , Masculino , Feminino , Atletas , Compreensão , Idioma , Competência Cultural
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa