Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nanomedicine ; 52: 102692, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328139

RESUMO

Repairing peripheral nerve injuries remains a challenge, even with use of auxiliary implantable biomaterial conduits. After implantation the location or function of polymeric devices cannot be assessed via clinical imaging modalities. Adding nanoparticle contrast agents into polymers can introduce radiopacity enabling imaging using computed tomography. Radiopacity must be balanced with changes in material properties impacting device function. In this study radiopaque composites were made from polycaprolactone and poly(lactide-co-glycolide) 50:50 and 85:15 with 0-40 wt% tantalum oxide (TaOx) nanoparticles. To achieve radiopacity, ≥5 wt% TaOx was required, with ≥20 wt% TaOx reducing mechanical properties and causing nanoscale surface roughness. Composite films facilitated nerve regeneration in an in vitro co-culture of adult glia and neurons, measured by markers for myelination. The ability of radiopaque films to support regeneration was driven by the properties of the polymer, with 5-20 wt% TaOx balancing imaging functionality with biological response and proving that in situ monitoring is feasible.


Assuntos
Materiais Biocompatíveis , Neuroglia , Materiais Biocompatíveis/farmacologia , Neurônios , Polímeros , Próteses e Implantes , Regeneração Nervosa
2.
Magn Reson Med ; 83(6): 2276-2283, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31765493

RESUMO

PURPOSE: MRI-based cell tracking identifies the location of magnetically labeled cells with hypointense voxels. Here we demonstrate a strain-dependent effect of liver MRI background on the feasibility of MRI-based cell tracking of transplanted cells in the mouse liver. METHODS: FVB mice (GFP-LUC and NOG) and C57BL/6 mice (GFP+ and wild-type) were fed 3 different diets with varying iron content. In vivo T2∗ -weighted images and T2∗ maps of the liver were acquired at different ages. Magnetically labeled cancer cells were injected intrasplenically for hepatic migration; then, mice were imaged by in vivo MRI and bioluminescence imaging. Livers were also imaged ex vivo by magnetic particle imaging. RESULTS: R2∗ increased with age in FVBNOG and FVBGFP-LUC mice that were fed diets sufficient in iron. FVBNOG mice developed a mottled appearance in their livers with age that did not occur in FVBGFP-LUC mice. R2∗ was unchanging with age in C57BL/6GFP mice, and the liver remained bright and homogenous. Labeled cells were not detectable by MRI in some livers despite successful engraftment as shown by bioluminescence imaging and magnetic particle imaging. CONCLUSION: Strain, diet, and age are important considerations for MRI-based cell tracking in the liver. If a model with excessive liver iron must be used, alternative imaging methods such as magnetic particle imaging can be considered.


Assuntos
Rastreamento de Células , Imageamento por Ressonância Magnética , Animais , Dieta , Estudos de Viabilidade , Fígado/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL
3.
Neuroimage ; 199: 153-159, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152841

RESUMO

The subventricular zone (SVZ) is a neurogenic niche in the mammalian brain, giving rise to migratory neural progenitor cells (NPC). In rodents, it is well-established that neurogenesis decreases with aging. MRI-based cell tracking has been used to measure various aspects of neurogenesis and NPC migration in rodents, yet it has not yet been validated in the context of age-related decrease in neurogenesis. This validation is critical to using these MRI techniques to study changes in neurogenesis that arise in diseases prevalent in aging populations and their combination with advanced cellular therapeutic approaches aiming to combat neurodegeneration. As such, in this work we used MRI-based cell tracking to measure endogenous neurogenesis and cell migration from the SVZ along the rostral migratory stream to the olfactory bulb, for 12 days duration, in rats aged 9 weeks to 2 years old. To enable the specific detection of NPCs by MRI, we injected micron sized particles of iron oxide (MPIOs) into the lateral ventricle to endogenously label cells within the SVZ, which then appeared as hypo-intensive spots within MR images. In vivo MRI data showed that the rate of NPC migration was significantly different between all ages examined, with decreases in the distance traveled and migration rate as age progressed. The total number of MPIO-labeled cells within the olfactory bulb on day 12, was significantly decreased when compared across ages in ex vivo high-resolution scans. We also demonstrate for the first-time, provocative preliminary data suggesting age-dependent MPIO uptake within the dentate gyrus (DG) as well. Histology to identify doublecortin-positive NPCs, verified the decrease in cell labeling as a function of aging, for both regions. The dramatic reduction of NPC labeling within the SVZ observed with MRI, validates the sensitivity of MRI-based cell tracking to neurogenic potential and demonstrates the importance of understanding the impact of age on the relationship of NPC and disease.


Assuntos
Envelhecimento , Rastreamento de Células/métodos , Giro Denteado/diagnóstico por imagem , Ventrículos Laterais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Células-Tronco Neurais/fisiologia , Animais , Movimento Celular/fisiologia , Proteína Duplacortina , Compostos Férricos , Ratos , Ratos Endogâmicos F344 , Coloração e Rotulagem
4.
Magn Reson Med ; 82(1): 387-394, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30874333

RESUMO

PURPOSE: While rodents are the primary animal models for contrast agent evaluation, rodents can potentially misrepresent human organ clearance of newly developed contrast agents. For example, gadolinium (Gd)-BOPTA has ~50% hepatic clearance in rodents, but ~5% in humans. This study demonstrates the benefit of chimeric mice expressing human hepatic OATPs (organic anion-transporting polypeptides) to improve evaluation of novel contrast agents for clinical use. METHODS: FVB (wild-type) and OATP1B1/1B3 knock-in mice were injected with hepatospecific MRI contrast agents (Gd-EOB-DTPA, Gd-BOPTA) and nonspecific Gd-DTPA. T1 -weighted dynamic contrast-enhanced MRI was performed on mice injected intravenously. Hepatic MRI signal enhancement was calculated per time point. Mass of gadolinium cleared per time point and percentage elimination by means of feces and urine were also measured. RESULTS: Following intravenous injection of Gd-BOPTA in chimeric OATP1B1/1B3 knock-in mice, hepatic MRI signal enhancement and elimination by liver was more reflective of human hepatic clearance than that measured in wild-type mice. Gd-BOPTA hepatic MRI signal enhancement was reduced to 22% relative to wild-type mice. Gd-BOPTA elimination in wild-type mice was 83% fecal compared with 32% fecal in chimeric mice. Hepatic MRI signal enhancement and elimination for Gd-EOB-DTPA and Gd-DTPA were similar between wild-type and chimeric cohorts. CONCLUSION: Hepatic MRI signal enhancement and elimination of Gd-EOB-DTPA, Gd-BOPTA, and Gd-DTPA in chimeric OATP1B1/1B3 knock-in mice closely mimics that seen in humans. This study provides evidence that the chimeric knock-in mouse is a more useful screening tool for novel MRI contrast agents destined for clinical use as compared to the traditionally used wild-type models.


Assuntos
Meios de Contraste/farmacocinética , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/administração & dosagem , Meios de Contraste/análise , Fezes/química , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/análise , Gadolínio DTPA/farmacocinética , Humanos , Masculino , Meglumina/administração & dosagem , Meglumina/análogos & derivados , Meglumina/análise , Meglumina/farmacocinética , Camundongos , Camundongos Transgênicos , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/análise , Compostos Organometálicos/farmacocinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Small ; 14(3)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29134771

RESUMO

The accumulation and formation of ß-amyloid (Aß) plaques in the brain are distinctive pathological hallmarks of Alzheimer's disease (AD). Designing nanoparticle (NP) contrast agents capable of binding with Aß highly selectively can potentially facilitate early detection of AD. However, a significant obstacle is the blood brain barrier (BBB), which can preclude the entrance of NPs into the brain for Aß binding. In this work, bovine serum albumin (BSA) coated NPs are decorated with sialic acid (NP-BSAx -Sia) to overcome the challenges in Aß imaging in vivo. The NP-BSAx -Sia is biocompatible with high magnetic relaxivities, suggesting that they are suitable contrast agents for magnetic resonance imaging (MRI). The NP-BSAx -Sia binds with Aß in a sialic acid dependent manner with high selectivities toward Aß deposited on brains and cross the BBB in an in vitro model. The abilities of these NPs to detect Aß in vivo in human AD transgenic mice by MRI are evaluated without the need to coinject mannitol to increase BBB permeability. T2 *-weighted MRI shows that Aß plaques in mouse brains can be detected as aided by NP-BSAx -Sia, which is confirmed by histological analysis. Thus, NP-BSAx -Sia is a promising new tool for noninvasive in vivo detection of Aß plaques.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/análise , Meios de Contraste/química , Nanopartículas de Magnetita/química , Ácido N-Acetilneuramínico/química , Soroalbumina Bovina/química , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Meios de Contraste/metabolismo , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos
6.
Pattern Recognit ; 73: 65-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30774153

RESUMO

Transfer learning, or inductive transfer, refers to the transfer of knowledge from a source task to a target task. In the context of convolutional neural networks (CNNs), transfer learning can be implemented by transplanting the learned feature layers from one CNN (derived from the source task) to initialize another (for the target task). Previous research has shown that the choice of the source CNN impacts the performance of the target task. In the current literature, there is no principled way for selecting a source CNN for a given target task despite the increasing availability of pre-trained source CNNs. In this paper we investigate the possibility of automatically ranking source CNNs prior to utilizing them for a target task. In particular, we present an information theoretic framework to understand the source-target relationship and use this as a basis to derive an approach to automatically rank source CNNs in an efficient, zero-shot manner. The practical utility of the approach is thoroughly evaluated using the PlacesMIT dataset, MNIST dataset and a real-world MRI database. Experimental results demonstrate the efficacy of the proposed ranking method for transfer learning.

7.
Magn Reson Med ; 78(5): 1991-2002, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28019017

RESUMO

PURPOSE: Magnetic resonance imaging (MRI)-based cell tracking has emerged as a useful tool for identifying the location of transplanted cells, and even their migration. Magnetically labeled cells appear as dark contrast in T2*-weighted MRI, with sensitivities of individual cells. One key hurdle to the widespread use of MRI-based cell tracking is the inability to determine the number of transplanted cells based on this contrast feature. In the case of single cell detection, manual enumeration of spots in three-dimensional (3D) MRI in principle is possible; however, it is a tedious and time-consuming task that is prone to subjectivity and inaccuracy on a large scale. This research presents the first comprehensive study on how a computer-based intelligent, automatic, and accurate cell quantification approach can be designed for spot detection in MRI scans. METHODS: Magnetically labeled mesenchymal stem cells (MSCs) were transplanted into rats using an intracardiac injection, accomplishing single cell seeding in the brain. T2*-weighted MRI of these rat brains were performed where labeled MSCs appeared as spots. Using machine learning and computer vision paradigms, approaches were designed to systematically explore the possibility of automatic detection of these spots in MRI. Experiments were validated against known in vitro scenarios. RESULTS: Using the proposed deep convolutional neural network (CNN) architecture, an in vivo accuracy up to 97.3% and in vitro accuracy of up to 99.8% was achieved for automated spot detection in MRI data. CONCLUSION: The proposed approach for automatic quantification of MRI-based cell tracking will facilitate the use of MRI in large-scale cell therapy studies. Magn Reson Med 78:1991-2002, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Rastreamento de Células/métodos , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Algoritmos , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Ratos
8.
Int J Cancer ; 137(11): 2618-29, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26060989

RESUMO

Identification of micrometastatic disease at the time of surgery remains extremely challenging in ovarian cancer patients. We used fluorescence microscopy, an in vivo imaging system and a fluorescence stereo microscope to evaluate fluorescence distribution in Claudin-3- and -4-overexpressing ovarian tumors, floating tumor clumps isolated from ascites and healthy organs. To do so, mice harboring chemotherapy-naïve and chemotherapy-resistant human ovarian cancer xenografts or patient-derived xenografts (PDXs) were treated with the carboxyl-terminal binding domain of the Clostridium perfringens enterotoxin (c-CPE) conjugated to FITC (FITC-c-CPE) or the near-infrared (NIR) fluorescent tag IRDye CW800 (CW800-c-CPE) either intraperitoneally (IP) or intravenously (IV). We found tumor fluorescence to plateau at 30 min after IP injection of both the FITC-c-CPE and the CW800-c-CPE peptides and to be significantly higher than in healthy organs (p < 0.01). After IV injection of CW800-c-CPE, tumor fluorescence plateaued at 6 hr while the most favorable tumor-to-background fluorescence ratio (TBR) was found at 48 hr in both mouse models. Importantly, fluorescent c-CPE was highly sensitive for the in vivo visualization of peritoneal micrometastatic tumor implants and the identification of ovarian tumor spheroids floating in malignant ascites that were otherwise not detectable by conventional visual observation. The use of the fluorescent c-CPE peptide may represent a novel and effective optical approach at the time of primary debulking surgery for the real-time detection of micrometastatic ovarian disease overexpressing the Claudin-3 and -4 receptors or the identification of residual disease at the time of interval debulking surgery after neoadjuvant chemotherapy treatment.


Assuntos
Enterotoxinas/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Micrometástase de Neoplasia/patologia , Neoplasias Ovarianas/patologia , Animais , Claudina-3/metabolismo , Claudina-4/metabolismo , Feminino , Humanos , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Magn Reson Med ; 73(1): 376-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24753150

RESUMO

Metallic particles have shaped the use of magnetic resonance imaging (MRI) for molecular and cellular imaging. Although these particles have generally been developed for extracellular residence, either as blood pool contrast agents or targeted contrast agents, the coopted use of these particles for intracellular labeling has grown over the last 20 years. Coincident with this growth has been the development of metal oxide particles specifically intended for intracellular residence, and innovations in the nature of the metallic core. One promising nanoparticle construct for MRI-based cell tracking is polymer encapsulated metal oxide nanoparticles. Rather than a polymer coated metal oxide nanocrystal of the core: shell type, polymer encapsulated metal oxide nanoparticles cluster many nanocrystals within a polymer matrix. This nanoparticle composite more efficiently packages inorganic nanocrystals, affording the ability to label cells with more inorganic material. Further, for magnetic nanocrystals, the clustering of multiple magnetic nanocrystals within a single nanoparticle enhances r2 and r2* relaxivity. Methods for fabricating polymer encapsulated metal oxide nanoparticles are facile, yielding both varied compositions and synthetic approaches. This review presents a brief history into the use of metal oxide particles for MRI-based cell tracking and details the development and use of biodegradable, polymer encapsulated, metal oxide nanoparticles and microparticles for MRI-based cell tracking.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste/química , Implantes de Medicamento/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Polímeros/química , Implantes Absorvíveis , Animais , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Magn Reson Med ; 71(4): 1568-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23661604

RESUMO

PURPOSE: Endogenous labeling of stem/ progenitor cells via intracerebroventricular injection of micron-sized particles of iron oxide (MPIOs) has become standard methodology for MRI of adult neurogenesis. While this method is well characterized in the naïve rodent brain, it has not been fully investigated in disease models. Here, we describe methodological challenges that can confound data analysis when this technique is applied to a rat model of stroke, the endothelin-1 model of focal cortical ischemia. METHODS: We intended to track endogenous neuroblast migration from the subventricular zone to the stroke area using previously described methods for in vivo labeling of endogenous neuroblasts with MPIOs and following migration with high resolution MRI. RESULTS: MPIOs accumulation in stroke regions of endothelin-1-treated brains involves two dynamic steps: an initial rapid cell independent mechanism, followed by slower MPIOs accumulation. While the latter may in part be attributable to cell dependent delivery of the particles, the cell independent mechanism complicates the interpretation of the data. Strategies aimed at prelabeling the stem cell niche reduced cell independent MPIOs accumulation, but failed to abolish it. CONCLUSION: We conclude that MRI-based neural stem/progenitor cell tracking via direct injection of MPIOs into the lateral and third ventricles, requires significant validation in models of brain disease/trauma.


Assuntos
Isquemia Encefálica/patologia , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/patologia , Óxido Ferroso-Férrico/farmacocinética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Animais , Isquemia Encefálica/induzido quimicamente , Movimento Celular/efeitos dos fármacos , Ventrículos Cerebrais/efeitos dos fármacos , Meios de Contraste/farmacocinética , Endotelina-1 , Imageamento por Ressonância Magnética/métodos , Taxa de Depuração Metabólica , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
11.
Magn Reson Med ; 71(3): 1238-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23568825

RESUMO

PURPOSE: To design, fabricate, characterize, and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. METHODS: Poly(lactide-co-glycolide) (PLGA) encapsulated magnetic nano and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance, and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. RESULTS: Highly magnetic nano (∼100 nm) and microparticles (∼1-2 µm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3-50 pg Fe/cell at 3 h for different particles types, and >100 pg Fe/cell after 10 h, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ∼80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. CONCLUSION: The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking.


Assuntos
Rastreamento de Células/métodos , Ácido Láctico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Nanocápsulas/química , Células-Tronco Neurais/citologia , Ácido Poliglicólico/química , Animais , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Meios de Contraste/síntese química , Feminino , Aumento da Imagem/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Camundongos , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
J Biomed Mater Res A ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728118

RESUMO

Implanted polymeric devices, designed to encourage tissue regeneration, require porosity. However, characterizing porosity, which affects many functional device properties, is non-trivial. Computed tomography (CT) is a quick, versatile, and non-destructive way to gain 3D structural information, yet various CT technologies, such as benchtop, preclinical and clinical systems, all have different capabilities. As system capabilities determine the structural information that can be obtained, seamless monitoring of key device features through all stages of clinical translation must be engineered intentionally. Therefore, in this study we tested feasibility of obtaining structural information in pre-clinical systems and high-resolution micro-CT (µCT) under physiological conditions. To overcome the low CT contrast of polymers in hydrated environments, radiopaque nanoparticle contrast agent was incorporated into porous devices. The size of resolved features in porous structures is highly dependent on the resolution (voxel size) of the scan. As the voxel size of the CT scan increased (lower resolution) from 5 to 50 µm, the measured pore size was overestimated, and percentage porosity was underestimated by nearly 50%. With the homogeneous introduction of nanoparticles, changes to device structure could be quantified in the hydrated state, including at high-resolution. Biopolymers had significant structural changes post-hydration, including a mean increase of 130% in pore wall thickness that could potentially impact biological response. By incorporating imaging capabilities into polymeric devices, CT can be a facile way to monitor devices from initial design stages through to clinical translation.

13.
Mol Imaging Biol ; 26(2): 233-239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448775

RESUMO

PURPOSE: A critical step in cell-based therapies is determining the exact position of transplanted cells immediately post-transplant. Here, we devised a method to detect cell transplants immediately post-transplant, using a clinical gadolinium-based contrast agent. These cells were detected as hyperintense signals using a clinically familiar T1-weighted MRI protocol. PROCEDURES: HEK293 cells were stably transduced to express human OATP1B3, a hepatic organic anion transporting polypeptide that transports Gd-EOB-DTPA into cells that express the transporters, the intracellular accumulation of which cells causes signal enhancement on T1-weighted MRI. Cells were pre-labeled prior to injection in media containing Gd-EOB-DTPA for MRI evaluation and indocyanine green for cryofluorescence tomography validation. Labeled cells were injected into chicken hearts, in vitro, after which MRI and cryofluorescence tomography were performed in sequence. RESULTS: OATP1B3-expressing cells had substantially reduced T1 following labeling with Gd-EOB-DTPA in culture. Following their implantation into chicken heart, these cells were robustly identified in T1-weighted MRI, with image-derived injection volumes of cells commensurate with intended injection volumes. Cryofluorescence tomography showed that the areas of signal enhancement in MRI overlapped with areas of indocyanine green signal, indicating that MRI signal enhancement was due to the transplanted cells. CONCLUSIONS: OATP1B3-expressing cells can be pre-labeled with Gd-EOB-DTPA prior to injection into tissue, affording the use of clinically familiar T1-weighted MRI to robustly detect cell transplants immediately after transplant. This procedure is easily generalizable and has potential advantages over the use of iron oxide based cell labeling agents and imaging procedures.


Assuntos
Verde de Indocianina , Transportadores de Ânions Orgânicos , Humanos , Rastreamento de Células , Células HEK293 , Gadolínio DTPA , Meios de Contraste , Fígado , Imageamento por Ressonância Magnética/métodos , Transplante de Células
14.
Biomater Adv ; 159: 213825, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479242

RESUMO

Devices to treat peripheral nerve injury (PNI) must balance many considerations to effectively guide regenerating nerves across a gap and achieve functional recovery. To enhance efficacy, design features like luminal fillers have been explored extensively. Material choice for PNI devices is also critical, as the determining factor of device mechanics, and degradation rate and has increasingly been found to directly impact biological response. This study investigated the ways in which synthetic polymer materials impact the differentiation state and myelination potential of Schwann cells, peripheral nerve glia. Microporous substrates of polycaprolactone (PCL), poly(lactide-co-glycolide) (PLGA) 85:15, or PLGA 50:50 were chosen, as materials already used in nerve repair devices, representing a wide range of mechanics and degradation profiles. Schwann cells co-cultured with dorsal root ganglion (DRG) neurons on the substrates expressed more mature myelination proteins (MPZ) on PLGA substrates compared to PCL. Changes to myelination and differentiation state of glia were reflected in adhesion proteins expressed by glia, including ß-dystroglycan and integrin α6, both laminin binding proteins. Importantly, degradation products of the polymers affected glial expression independently of direct attachment. Fast degrading PLGA 50:50 substrates released measurable amounts of degradation products (lactic acid) within the culture period, which may push Schwann cells towards glycolytic metabolism, decreasing expression of early transcription factors like sox10. This study shows the importance of understanding not only material effects on attachment, but also on cellular metabolism which drives myelination responses.


Assuntos
Neurônios , Células de Schwann , Células de Schwann/metabolismo , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Técnicas de Cocultura , Gânglios Espinais
15.
Acta Biomater ; 181: 222-234, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38648912

RESUMO

Polymeric biomedical implants are an important clinical tool, but degradation remains difficult to determine post-implantation. Computed tomography (CT) could be a powerful tool for device monitoring, but polymers require incorporation of radiopaque contrast agents to be distinguishable from tissue. In addition, immune response to radiopaque devices must be characterized as it modulates device function. Radiopaque devices and films were produced by incorporating 0-20 wt% TaOx nanoparticles into polymers: polycaprolactone (PCL) and poly(lactide-co-glycolide) (PLGA). In vitro inflammatory responses of mouse bone marrow-derived macrophages to polymer matrix incorporating TaOx nanoparticles was determined by monitoring cytokine secretion. Nanoparticle addition stimulated a slight inflammatory reaction, increasing TNFα secretion, mediated by changes in polymer matrix properties. Subsequently, devices (PLGA 50:50 + 20 wt% TaOx) were implanted subcutaneously in a mouse model of chronic inflammation, that featured a sustained increase in inflammatory response local to the implant site over 12 weeks. No changes to device degradation rates or foreign body response were noted between a normal and chronically stimulated inflammatory environment. Serial CT device monitoring post-implantation provided a detailed timeline of device collapse, with no rapid, spontaneous release of nanoparticles that occluded matrix visualization. Importantly, repeat CT sessions did not ablate the immune system or alter degradation kinetics. Thus, polymer devices incorporating radiopaque nanoparticles can be used for in situ monitoring and be readily combined with other medical imaging techniques, for a dynamic view biomaterial and tissue interactions. STATEMENT OF SIGNIFICANCE: A growing number of implantable devices are in use in the clinic, exposing patients to inherent risks of implant movement, collapse, and infection. The ability to monitor implanted devices would enable faster diagnosis of failure and open the door for personalized rehabilitation therapies - both of which could vastly improve patient outcomes. Unfortunately, polymeric materials which make up most biomedical devices are not radiologically distinguishable from tissue post-implantation. The introduction of radiopaque nanoparticles into polymers allows for serial monitoring via computed tomography, without affecting device degradation. Here we demonstrate for the first time that nanoparticles do not undergo burst release from devices post-implantation and that inflammatory responses - a key determinant of device function in vivo - are also unaffected by nanoparticle addition.


Assuntos
Meios de Contraste , Inflamação , Microtomografia por Raio-X , Animais , Inflamação/patologia , Camundongos , Meios de Contraste/química , Meios de Contraste/farmacocinética , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Macrófagos/metabolismo , Nanopartículas/química , Camundongos Endogâmicos C57BL
16.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464166

RESUMO

3D printed biomaterial implants are revolutionizing personalized medicine for tissue repair, especially in orthopedics. In this study, a radiopaque Bi 2 O 3 doped polycaprolactone ( PCL ) composite is developed and implemented to enable the use of diagnostic X-ray technologies, especially photon counting X-ray computed tomography ( PCCT ), for comprehensive in vivo device monitoring. PCL filament with homogeneous Bi 2 O 3 nanoparticle ( NP ) dispersion (0.8 to 11.7 wt%) are first fabricated. Tissue engineered scaffolds ( TES ) are then 3D printed with the composite filament, optimizing printing parameters for small feature size and severely overhung geometries. These composite TES are characterized via micro-computed tomography ( µ CT ), tensile testing, and a cytocompatibility study, with Bi 2 O 3 mass fractions as low as 2 wt% providing excellent radiographic distinguishability, improved tensile properties, and equivalent cytocompatibility of neat PCL. The excellent radiographic distinguishability is validated in situ by imaging 4 and 7 wt% TES in a mouse model with µCT, showing excellent agreement with in vitro measurements. Subsequently, CT image-derived swine menisci are 3D printed with composite filament and re-implanted in their corresponding swine legs ex vivo . Re-imaging the swine legs via clinical CT allows facile identification of device location and alignment. Finally, the emergent technology of PCCT unambiguously distinguishes implanted menisci in situ.

17.
Nanotechnology ; 24(12): 125101, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23459030

RESUMO

Magnetic PLGA nanoparticles are a significant advancement in the quest to translate MRI-based cell tracking to the clinic. The benefits of these types of particles are that they encapsulate large amounts of iron oxide nanocrystals within an FDA-approved polymer matrix, combining the best aspects of inert micron-sized iron oxide particles, or MPIOs, and biodegradable small particles of iron oxide, or SPIOs. Practically, PLGA nanoparticle fabrication and storage requires some form of cryoprotectant to both protect the particle during freeze drying and to promote resuspension. While this is a commonly employed procedure in the fabrication of drug loaded PLGA nanoparticles, it has yet to be investigated for magnetic particles and what effect this might have on internalization of magnetic particles. As such, in this study, magnetic PLGA nanoparticles were fabricated with various concentrations of two common cryoprotectants, dextrose and sucrose, and analyzed for their ability to magnetically label cells. It was found that cryoprotection with either sugar significantly enhanced the ability to resuspend nanoparticles without aggregation. Magnetic cell labeling was impacted by sugar concentration, with higher sugar concentrations used during freeze drying more significantly reducing magnetic cell labeling than lower concentrations. These studies suggest that cryoprotection with 1% dextrose is an optimal compromise that preserves monodispersity following resuspension and high magnetic cell labeling.


Assuntos
Rastreamento de Células/métodos , Crioprotetores/química , Crioprotetores/farmacologia , Ácido Láctico/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Ácido Poliglicólico/química , Animais , Células Cultivadas , Glucose/química , Camundongos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sacarose/química , Termogravimetria
18.
J Nanosci Nanotechnol ; 13(6): 3778-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862407

RESUMO

Superparamagnetic iron oxide particles have proven useful for cell tracking applications by monitoring cell transplantation and migration in living organisms. However, one perceived drawback is that these particles cause dark contrast in MRI, sometimes yielding confusion with other biological phenomena, which also yield dark contrast. To that end, researchers have investigated the use of gadolinium oxide (Gd2O3) based contrast agents for MRI-based cell tracking, as Gd2O3 has favorable r1 molar relaxivity. We synthesized Gd2O3 nanocrystals and encapsulated them within PLGA matrices to form approximatley to 150 nm nanoparticles. r1 was 1.9 mM(-1) sec(-1) and r2 was 8.4 mM(-1) sec(-1). Cell labeling with particles was well tolerated by cells except at very high doses. MRI of labeled cells showed that labeled cells could achieve both R1 and R2 enhancements due to the internalized particles. R2 enhancements were approximately to twice that of R1 enhancements suggesting the use of very short echo times when using Gd2O3 based contrast agents for MRI-based cell tracking.


Assuntos
Gadolínio/química , Ácido Láctico/química , Nanopartículas Metálicas , Ácido Poliglicólico/química , Animais , Células Cultivadas , Imageamento por Ressonância Magnética , Camundongos , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Difração de Pó
19.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36711915

RESUMO

Repairing peripheral nerve injuries remains a clinical challenge. To enhance nerve regeneration and functional recovery, the use of auxiliary implantable biomaterial conduits has become widespread. After implantation, there is currently no way to assess the location or function of polymeric biomedical devices, as they cannot be easily differentiated from surrounding tissue using clinical imaging modalities. Adding nanoparticle contrast agents into polymer matrices can introduce radiopacity and enable imaging using computed tomography (CT), but radiopacity must be balanced with changes in material properties that impact device function and biological response. In this study radiopacity was introduced to porous films of polycaprolactone (PCL) and poly(lactide-co-glycolide) (PLGA) 50:50 and 85:15 with 0-40wt% biocompatible tantalum oxide (TaO x ) nanoparticles. To achieve radiopacity, at least 5wt% TaO x was required, with ≥ 20wt% TaO x leading to reduced mechanical properties and increased nano-scale surface roughness of films. As polymers used for peripheral nerve injury devices, films facilitated nerve regeneration in an in vitro co-culture model of glia (Schwann cells) and dorsal root ganglion neurons (DRG), measured by expression markers for myelination. The ability of radiopaque films to support nerve regeneration was determined by the properties of the polymer matrix, with a range of 5-20wt% TaO x balancing both imaging functionality with biological response and proving that in situ monitoring of nerve repair devices is feasible.

20.
Res Sq ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168297

RESUMO

Purpose: A critical step in cell-based therapies is determining the exact position of transplanted cells immediately post-transplant. Here, we devised a method to detect cell transplants immediately post-transplant, using a clinical gadolinium-based contrast agent. These cells were detected as hyperintense signals using a clinically familiar T1-weighted MRI protocol. Procedures: HEK293 cells were stably transduced to express human OATP1B3, a hepatic organic anion transporting polypeptide that transports Gd-EOB-DTPA into cells that express the transporters, the intracellular accumulation of which cells causes signal enhancement on T1-weighted MRI. Cells were pre-labeled prior to injection in media containing Gd-EOB-DTPA for MRI evaluation and indocyanine green for cryofluorescence tomography validation. Labeled cells were injected into chicken hearts, in vitro, after which MRI and cryofluorescence tomography were performed in sequence. Results: OATP1B3-expressing cells had substantially reduced T1 following labeling with Gd-EOB-DTPA in culture. Following their implantation into chicken heart, these cells were robustly identified in T1-weighted MRI, with image-derived injection volumes of cells commensurate with intended injection volumes. Cryofluorescence tomography showed that the areas of signal enhancement in MRI overlapped with areas of indocyanine green signal, indicating that MRI signal enhancement was due to the transplanted cells. Conclusions: OATP1B3-expressing cells can be pre-labeled with Gd-EOB-DTPA prior to injection into tissue, affording the use of clinically familiar T1-weighted MRI to robustly detect cell transplants immediately after transplant. This procedure is easily generalizable and has potential advantages over the use of iron oxide based cell labeling agents and imaging procedures.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa