Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 23(16): e2200380, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37148169

RESUMO

The use of poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as carriers for chemotherapeutic drugs is regarded as an actively targeted nano-therapy for the specific delivery of anti-cancer drugs to target cells. However, the exact mechanism by which PLGA NPs boost anticancer cytotoxicity at the molecular level remains largely unclear. This study employed different molecular approaches to define the response of carcinoma FaDu cells to different types of treatment, specifically: paclitaxel (PTX) alone, drug free PLGA NPs, and PTX-loaded PTX-PLGA NPs. Functional cell assays revealed that PTX-PLGA NPs treated cells had a higher level of apoptosis than PTX alone, whereas the complementary, UHPLC-MS/MS (TIMS-TOF) based multi-omics analyses revealed that PTX-PLGA NPs treatment resulted in increased abundance of proteins associated with tubulin, as well as metabolites such as 5-thymidylic acid, PC(18:1(9Z)/18:1(9Z0), vitamin D, and sphinganine among others. The multi-omics analyses revealed new insights about the molecular mechanisms underlying the action of novel anticancer NP therapies. In particular, PTX-loaded NPs appeared to exacerbate specific changes induced by both PLGA-NPs and PTX as a free drug. Hence, the PTX-PLGA NPs' molecular mode of action, seen in greater detail, depends on this synergy that ultimately accelerates the apoptotic process, resulting in cancer cell death.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Nanopartículas , Humanos , Paclitaxel/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Poliglactina 910 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Multiômica , Espectrometria de Massas em Tandem , Ácido Poliglicólico , Ácido Láctico , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Portadores de Fármacos/farmacologia
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675128

RESUMO

Skin cancer, including malignant melanoma (MM) and keratinocyte carcinoma (KC), historically named non-melanoma skin cancers (NMSC), represents the most common type of cancer among the white skin population. Despite decades of clinical research, the incidence rate of melanoma is increasing globally. Therefore, a better understanding of disease pathogenesis and resistance mechanisms is considered vital to accomplish early diagnosis and satisfactory control. The "Omics" field has recently gained attention, as it can help in identifying and exploring metabolites and metabolic pathways that assist cancer cells in proliferation, which can be further utilized to improve the diagnosis and treatment of skin cancer. Although skin tissues contain diverse metabolic enzymes, it remains challenging to fully characterize these metabolites. Metabolomics is a powerful omics technique that allows us to measure and compare a vast array of metabolites in a biological sample. This technology enables us to study the dermal metabolic effects and get a clear explanation of the pathogenesis of skin diseases. The purpose of this literature review is to illustrate how metabolomics technology can be used to evaluate the metabolic profile of human skin cancer, using a variety of analytical platforms including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). Data collection has not been based on any analytical method.


Assuntos
Metaboloma , Neoplasias Cutâneas , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Neoplasias Cutâneas/diagnóstico
3.
J Proteomics ; 265: 104660, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35728772

RESUMO

The 2020 global cancer registry has ranked breast cancer (BCa) as the most commonly diagnosed type of cancer and the most common cause of cancer-related deaths in women worldwide. Increasing resistance and significant side effects continue to limit the efficacy of anti-BCa drugs, hence the need to identify new drug targets and to develop novel compounds to overcome these limitations. Nature-inspired anti-cancer compounds are becoming increasingly popular since they often provide a relatively safe and effective alternative. In this study, we employed multi-omics techniques to gain insights into the relevant mechanism of action of two recently identified new nature-inspired anti-cancer compounds (SIMR3066 and SIMR3058). Discovery proteomics analysis combined with LC-MS/MS-based untargeted metabolomics analysis was performed on compound-treated vs DMSO-treated (control) MCF-7 cells. Downstream protein functional enrichment analysis showed that most of the responsive proteins were functionally associated with antigen processing and neutrophil degranulation, RNA catabolism and protein folding as well as cytoplasmic vesicle lumen and mitochondrial matrix formation. Consistent with the proteomics findings, metabolomic pathway analysis suggested that the differentially abundant compounds indicated altered metabolic pathways such as glycolysis, the Krebs cycle and oxidative phosphorylation. Furthermore, metabolomics-based enriched-for-action pathway analysis showed that the two compounds associate with mercaptopurine, thioguanine and azathioprine related pathways. Lastly, integrated proteomics and metabolomics analysis revealed that treatment of BCa with SIMR3066 disrupts several signaling pathways including p53-mediated apoptosis and the circadian entertainment pathway. Overall, the multi-omics approach we used in this study indicated that it is a powerful tool in probing the mechanism of action of lead drug candidates. SIGNIFICANCE: In this study we adopted a multi-omics (proteomics and metabolomics) strategy to learn more about the molecular mechanisms of action of nature-inspired potential anticancer drugs. Following treatment with SIMR3066 or SIMR3058, the integration of these multi-omics data sets revealed which biological pathways are altered in BCa cells. This study demonstrates that combining proteomics with metabolomics is a powerful method to investigate the mechanism of action of potential anticancer lead drug candidates.


Assuntos
Neoplasias da Mama , Espectrometria de Massas em Tandem , Cromatografia Líquida , Feminino , Humanos , Metabolômica/métodos , Proteômica/métodos
4.
Cancer Chemother Pharmacol ; 90(6): 467-488, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264351

RESUMO

PURPOSE: HER2-enriched breast cancer with high levels of hormone receptor expression, known as "triple positive" breast cancer, may represent a new entity with a relatively favourable prognosis against which the combination of chemotherapy, HER-2 inhibition, and endocrine treatment may be considered overtreatment. We explored the effect of the anticancer drugs tamoxifen and trastuzumab, both separately and in combination, on the integrated proteomic and metabolic profile of "triple positive" breast cancer cells (BT-474). METHOD: We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry using a Bruker timsTOF to investigate changes in BT-474 cell line treated with either tamoxifen, trastuzumab or a combination. Differentially abundant metabolites were identified using the Bruker Human Metabolome Database metabolite library and proteins using the Uniprot proteome for Homo sapiens using MetaboScape and MaxQuant, respectively, for identification and quantitation. RESULTS: A total of 77 proteins and 85 metabolites were found to significantly differ in abundance in BT-474 treated cells with tamoxifen 5 µM/and or trastuzumab 2.5 µM. Findings suggest that by targeting important cellular signalling pathways which regulate cell growth, apoptosis, proliferation, and chemoresistance, these medicines have a considerable anti-growth effect in BT-474 cells. Pathways enriched for dysregulation include RNA splicing, neutrophil degranulation and activation, cellular redox homeostasis, mitochondrial transmembrane transport, ferroptosis and necroptosis, ABC transporters and central carbon metabolism. CONCLUSION: Our findings in protein and metabolite level research revealed that anti-cancer drug therapy had a significant impact on the key signalling pathways and molecular processes in triple positive BT-474 cell lines.


Assuntos
Neoplasias da Mama , Tamoxifeno , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteômica , Receptor ErbB-2/metabolismo , Espectrometria de Massas , Linhagem Celular Tumoral
5.
Cancer Genomics Proteomics ; 19(1): 79-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34949661

RESUMO

BACKGROUND/AIM: Trastuzumab and tamoxifen are two of the most widely prescribed anti-cancer drugs for breast cancer (BC). To date, few studies have explored the impact of anticancer drugs on metabolic pathways in BC. Metabolomics is an emerging technology that can identify new biomarkers for tracking therapy response and novel therapeutic targets. MATERIALS AND METHODS: We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) to investigate changes in MCF-7 and SkBr3 cell lines treated with either tamoxifen, trastuzumab or a combination of both. The Bruker Human Metabolome Database (HMDB) metabolite library was used to match spectra and the MetaboScape software to assign each feature with a putative metabolite name or molecular formula for metabolite annotation. RESULTS: A total of 98 metabolites were found to significantly differ in abundance in MCF-7 and SkBr3 treated cells. Moreover, the metabolic profile of the combination medication is similar to that of tamoxifen alone, according to functional enrichment analysis. CONCLUSION: Tamoxifen/trastuzumab treatment had a significant effect on pathways essential for the control of energy-production, which have previously been linked to cancer progression, and aggressiveness.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/análise , Neoplasias da Mama/tratamento farmacológico , Tamoxifeno/farmacologia , Trastuzumab/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento de Medicamentos/métodos , Metabolismo Energético/efeitos dos fármacos , Humanos , Células MCF-7 , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Tamoxifeno/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Trastuzumab/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa