RESUMO
Advanced technology for process monitoring and fault diagnosis is widely used in complex industrial processes. An important issue that needs to be considered is the ability to monitor key performance indicators (KPIs), which often cannot be measured sufficiently quickly or accurately. This paper proposes a data-driven approach based on maximizing the coefficient of determination for probabilistic soft sensor development when data are missing. Firstly, the problem of missing data in the training sample set is solved using the expectation maximization (EM) algorithm. Then, by maximizing the coefficient of determination, a probability model between secondary variables and the KPIs is developed. Finally, a Gaussian mixture model (GMM) is used to estimate the joint probability distribution in the probabilistic soft sensor model, whose parameters are estimated using the EM algorithm. An experimental case study on the alumina concentration in the aluminum electrolysis industry is investigated to demonstrate the advantages and the performance of the proposed approach.
RESUMO
A supervised probabilistic dynamic-controlled latent-variable (SPDCLV) model is proposed for online prediction, as well as real-time optimisation of process quality indicators. Compared to existing probabilistic latent-variable models, the key advantage of the proposed method lies in explicitly modelling the dynamic causality from the manipulated inputs to the quality pattern. This is achieved using a well-designed, dynamic-controlled Bayesian network. Furthermore, the algorithms for expectation-maximisation, forward filtering, and backward smoothing are designed for learning the SPDCLV model. For engineering applications, a framework for pattern-based quality prediction and optimisation is proposed, under which the pattern-filtering and pattern-based soft sensor are explored for online quality prediction. Furthermore, quality optimisation can be realised by directly controlling the pattern to the desired condition. Finally, case studies on both an industrial primary milling circuit and a numerical example illustrate the benefits of the SPDCLV method in that it can fully model the process dynamics, effectively predict and optimise the quality indicators, and monitor the process.
RESUMO
This paper proposed a prediction algorithm for the degraded actuator taking into account the impact of estimation error of hidden index in the closed-loop system. To this end, a unified prediction framework is established to evaluate the hidden degradation information and recursively update the degradation model parameters simultaneously. The advantage is that the prediction framework can comprehensively compensate the estimation error of hidden degradation index caused by system uncertainty. To jointly estimate the degradation information in avoidance of the impact of system uncertainty, a modified adaptive Kalman filter is designed, and the proof of stability is provided. With the priori estimate from the filter, the degradation model parameters are updated by the inverse filtering probability based on Bayes' theorem. It is followed by the computation of the remaining useful life (RUL) prediction utilizing aforementioned hidden degradation information and the latest degradation model. The effectiveness of the proposed RUL prediction algorithm is demonstrated by the degraded actuator in the continuous casting process.
RESUMO
The growth of data collection in industrial processes has led to a renewed emphasis on the development of data-driven soft sensors. A key step in building an accurate, reliable soft sensor is feature representation. Deep networks have shown great ability to learn hierarchical data features using unsupervised pretraining and supervised fine-tuning. For typical deep networks like stacked auto-encoder (SAE), the pretraining stage is unsupervised, in which some important information related to quality variables may be discarded. In this article, a new quality-driven regularization (QR) is proposed for deep networks to learn quality-related features from industrial process data. Specifically, a QR-based SAE (QR-SAE) is developed, which changes the loss function to control the weights of the different input variables. By choosing an appropriate inductive bias for the weight matrix, the model provides quality-relevant information for predictive modeling. Finally, the proposed QR-SAE is used to predict the quality of a real industrial hydrocracking process. Comparative experiments show that QR-SAE can extract quality-related features and achieve accurate prediction performance.
RESUMO
Using the expected detection delay (EDD) index to measure the performance of multivariate statistical process monitoring (MSPM) methods for constant additive faults have been recently developed. This paper, based on a statistical investigation of the T2- and Q-test statistics, extends the EDD index to the multiplicative and drift fault cases. As well, it is used to assess the performance of common MSPM methods that adopt these two test statistics. Based on how to use the measurement space, these methods can be divided into two groups, those which consider the complete measurement space, for example, principal component analysis-based methods, and those which only consider some subspace that reflects changes in key performance indicators, such as partial least squares-based methods. Furthermore, a generic form for them to use T2- and Q-test statistics are given. With the extended EDD index, the performance of these methods to detect drift and multiplicative faults is assessed using both numerical simulations and the Tennessee Eastman process.
RESUMO
Large-scale processes, consisting of multiple interconnected subprocesses, are commonly encountered in industrial systems, whose performance needs to be determined. A common approach to this problem is to use a key performance indicator (KPI)-based approach. However, the different KPI-based approaches are not developed with a coherent and consistent framework. Thus, this paper proposes a framework for KPI-based process monitoring and fault detection (PM-FD) for large-scale industrial processes, which considers the static and dynamic relationships between process and KPI variables. For the static case, a least squares-based approach is developed that provides an explicit link with least-squares regression, which gives better performance than partial least squares. For the dynamic case, using the kernel representation of each subprocess, an instrument variable is used to reduce the dynamic case to the static case. This framework is applied to the TE benchmark process and the hot strip mill rolling process. The results show that the proposed method can detect faults better than previous methods.