Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1087788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065917

RESUMO

Introduction: Autism spectrum disorder (ASD) is a persistent neurodevelopmental condition characterized by two core behavioral symptoms: impaired social communication and interaction, as well as stereotypic, repetitive behavior. No distinct cause of ASD is known so far; however, excitatory/inhibitory imbalance and a disturbed serotoninergic transmission have been identified as prominent candidates responsible for ASD etiology. Methods: The GABA B receptor agonist R-Baclofen and the selective agonist for the 5HT7 serotonin receptor LP-211 have been reported to correct social deficits and repetitive behaviors in mouse models of ASD. To evaluate the efficacy of these compounds in more details, we treated BTBR T+ Itpr3 tf /J and B6.129P2-Fmr1 tm1Cgr /J mice acutely with R-Baclofen or LP-211 and evaluated the behavior of animals in a series of tests. Results: BTBR mice showed motor deficits, elevated anxiety, and highly repetitive behavior of self-grooming. Fmr1-KO mice exhibited decreased anxiety and hyperactivity. Additionally, Fmr1-KO mice's ultrasonic vocalizations were impaired suggesting a reduced social interest and communication of this strain. Acute LP-211 administration did not affect the behavioral abnormalities observed in BTBR mice but improved repetitive behavior in Fmr1-KO mice and showed a trend to change anxiety of this strain. Acute R-Baclofen treatment improved repetitive behavior only in Fmr1-KO mice. Conclusion: Our results add value to the current available data on these mouse models and the respective compounds. Yet, additional studies are needed to further test R-Baclofen and LP-211 as potential treatments for ASD therapy.

2.
Microorganisms ; 7(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623187

RESUMO

Polymicrobial infections are of paramount importance because of the potential severity of clinical manifestations, often associated with increased resistance to antimicrobial treatment. The intricate interplay with the host and the immune system, and the impact on microbiome imbalance, are of importance in this context. The equilibrium of microbiota in the human host is critical for preventing potential dysbiosis and the ensuing development of disease. Bacteria and fungi can communicate via signaling molecules, and produce metabolites and toxins capable of modulating the immune response or altering the efficacy of treatment. Most of the bacterial-fungal interactions described to date focus on the human fungal pathogen Candida albicans and different bacteria. In this review, we discuss more than twenty different bacterial-fungal interactions involving several clinically important human pathogens. The interactions, which can be synergistic or antagonistic, both in vitro and in vivo, are addressed with a focus on the quorum-sensing molecules produced, the response of the immune system, and the impact on clinical outcome.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa