RESUMO
Bleomycin is an effective antibiotic with a significant anticancer properties, but its use is limited due to its potential to induce dose-dependent pulmonary fibrosis. Therefore, this study aimed to assess the therapeutic potential of Capsaicin as an additional treatment to enhance patient tolerance to Bleomycin compared to the antifibrotic drug Pirfenidone. Pulmonary fibrosis was induced in rats through by a single intratracheal Bleomycin administration in day zero, followed by either Capsaicin or Pirfenidone treatment for 7 days. After the animals were sacrificed, their lungs were dissected and examined using various stains for macroscopic and histopathological evaluation. Additionally, the study assessed various antioxidant, anti-inflammatory, and antifibrotic parameters were assessed. Rats exposed to Bleomycin exhibited visible signs of fibrosis, histopathological alterations, increased collagen deposition, and elevated mucin content. Bleomycin also led to heightened increased inflammatory cells infiltration in the bronchoalveolar lavage, elevated fibrosis biomarkers such as hydroxyproline, alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-ß1), increased inflammatory markers including tumor necrosis factor-alpha (TNF-α), interlukine-6 (Il-6), interlukine-1ß (Il-1ß) nuclear factor-kappa B (NF-κB), and Cyclooxygenase-2 (COX-2), and transforming growth factor-beta (TGF-ß1),. Furthermore, it reduced the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ), increased oxidative stress biomarkers like nitric oxide (NO), malondialdehyde (MDA), myeloperoxidase (MPO) and protein carbonyl. Bleomycin also decreased the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), reduced glutathione (GSH), total antioxidant capacity, and the activities of catalase and superoxide dismutase (SOD). Treating the animals with Capsaicin and Pirfenidone following Bleomycin exposure resulted in improved lung macroscopic and microscopic characteristics, reduced collagen deposition (collagen I and collagen III) and mucin content, decreased inflammatory cell infiltration, lowered levels of hydroxyproline, α-SMA, and TGF-ß1, decreased TNF-α, Il-6, Il-1ß, NF-κB, and COX-2, increased PPAR-γ and Nrf-2 expression, and improvement improved in all oxidative stress biomarkers. In summary, Capsaicin demonstrates significant antifibrotic activity against Bleomycin-induced lung injury that may be attributed, at least in part, to the antioxidant and anti-inflammatory activities of Capsaicin mediated by upregulation of PPAR-γ and Nrf-2 expression and decreasing. TGF-ß1, NF-κB and COX II proteins concentrations.
RESUMO
The journal retracts the article, "Optimized Ellagic Acid-Ca Pectinate Floating Beads for Gastroprotection against Indomethacin-Induced Gastric Injury in Rats" [...].
RESUMO
OBJECTIVE: Polycystic ovaries (PCO) is a hormonal disorder that is a leading cause of infertility. The formation of multiple persistent cysts and hormonal imbalance are hallmarks of PCO. Recent clinical studies reported a beneficial effect of the ketogenic diet (KD; high-fat, low-carbohydrate) on PCO. The aim of this study was to investigate the effect of the KD alone and in combination with metformin on letrozole-induced PCO in female rats. METHODS: Female rats were grouped into control and PCO (letrozole; 1 mg/kg for 21 days). The PCO group was subdivided into PCO (non-treated), PCO-metformin (300 mg/kg), PCO rats fed with KD only, and PCO rats treated with metformin and fed with KD. All groups continued to receive letrozole during the 21-day treatment period. At the end of the experiment, serum and ovaries were collected for further analysis. RESULTS: The untreated-PCO rats showed increased testosterone, LH/FSH ratio, and ovary weights. Disturbed apoptosis and proliferation balance were evident as a low caspase-3 activation and proliferating cell nuclear antigen expression and increased TGF-ß expression. The KD improved the letrozole-induced effects, which was comparable to the effect of metformin. Combining the KD with metformin treatment additively enhanced the metformin effect. CONCLUSION: Our results indicate that the KD has a protective role against PCO in rats, especially when combined with metformin. This study reveals a potential therapeutic role of the KD in PCO, which could prompt valuable future clinical applications.
Assuntos
Dieta Cetogênica , Metformina , Síndrome do Ovário Policístico , Humanos , Ratos , Feminino , Animais , Letrozol/efeitos adversos , Metformina/farmacologia , Metformina/uso terapêutico , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológicoRESUMO
Certain anticancer agents selectively target the nucleus of cancer cells. One such drug is 2-methoxyestradiol (2ME), which is used for treating lung cancer. To improve the therapeutic effectiveness of these agents, many new methods have been devised. 2ME was entrapped into the core of hydrophobic invasomes (INVA) covered with Phospholipon 90G and apamin (APA). The Box-Behnken statistical design was implemented to enhance the composition. Using Design-Expert software (Stat-Ease Inc., Minneapolis, MN), the INVA component quantities were optimized to obtain spherical particles with the smallest size, that is, a diameter of 167.8 nm. 2ME-INVA-APA significantly inhibited A549 cells and exhibited IC50 of 1.15 ± 0.04 µg/mL, which is lower than raw 2ME (IC50 5.6 ± 0.2 µg/mL). Post 2ME-INVA-APA administration, a significant rise in cell death and necrosis was seen among the A549 cells compared to those treated with plain formula or 2ME alone. This effect was indicated by increased Bax expression and reduced Bcl-2 expression, as well as mitochondrial membrane potential loss. Moreover, the cell cycle analysis showed that 2ME-INVA-APA arrests the G2-M phase of the A549 cells. Additionally, it was observed that the micellar formulation of the drug increased the cell count in pre-G1, thereby exhibiting phenomenal apoptotic potential. Furthermore, it up-regulates caspase-9 and p53 and downregulates TNF-α and NF-κß. Collectively, these findings showed that our optimized 2ME-INVA-APA could easily seep through the cell membrane and induce apoptosis in relatively low doses.
Assuntos
Apoptose , Neoplasias Pulmonares , 2-Metoxiestradiol/farmacologia , Células A549 , Apamina/farmacologia , Estradiol/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológicoRESUMO
A peptic ulcer is an alimentary tract injury that leads to a mucosal defect reaching the submucosa. This work aimed to optimize and maximize ellagic acid (EA) loading in Ca pectinate floating beads to maximize the release for 24 h. Three factors were selected: Ca pectinate concentration (X1, 1-3 w/v %), EA concentration (X2, 1-3 w/v %) and the dropping time (X3, 10-30 min). The factorial design proposed eight formulations. The optimized EA-Ca pectinate formulation was evaluated for the gastric ulcer index and the oxidative stress parameter determination of gastric mucosa. The results indicated that the optimum EA-Ca pectinate formula significantly improved the gastric ulcer index in comparison with raw EA. The protective effect of the optimized EA-Ca pectinate formula was further indicated by the histopathological features of the stomach. The results of the study indicate that an EA formulation in the form of Ca pectinate beads would be effective for protection against gastric ulcers because of Nonsteroidal anti-inflammatory drugs (NSAID) administration.