Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2401064, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739090

RESUMO

Ionic gating of oxide thin films has emerged as a novel way of manipulating the properties of thin films. Most studies are carried out on single devices with a three-terminal configuration, but, by exploring the electrokinetics during the ionic gating, such a configuration with initially insulating films leads to a highly non-uniform gating response of individual devices within large arrays of the devices. It is shown that such an issue can be circumvented by the formation of a uniform charge potential by the use of a thin conducting underlayer. This synchronized local ionic gating allows for the simultaneous manipulation of the electrical, magnetic, and/or optical properties of large arrays of devices. Designer metasurfaces formed in this way from SrCoO2.5 thin films display an anomalous optical reflection of light that relies on the uniform and coherent response of all the devices. Beyond oxides, almost any material whose properties can be controlled by the addition or removal of ions via gating can form novel metasurfaces using this technique. These findings provide insights into the electrokinetics of ionic gating and a wide range of applications using synchronized local ionic gating.

2.
ACS Nano ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315563

RESUMO

The family of two-dimensional (2D) van der Waals (vdW) materials provides a playground for tuning structural and magnetic interactions to create a wide variety of spin textures. Of particular interest is the ferromagnetic compound Fe5GeTe2 that we show displays a range of complex spin textures as well as complex crystal structures. Here, using a high-brailliance laboratory X-ray source, we show that the majority (1 × 1) Fe5GeTe2 (FGT5) phase exhibits a structure that was previously considered as being centrosymmetric but rather lacks inversion symmetry. In addition, FGT5 exhibits a minority phase that exhibits a long-range ordered (√3 × âˆš3)-R30° superstructure. This superstructure is highly interesting in that it is innately 2D without any lattice periodicity perpendicular to the vdW layers, and furthermore, the superstructure is a result of ordered Te vacancies in one of the topmost layers of the FGT5 sheets rather than being a result of vertical Fe ordering as earlier suggested. We show, from direct real-space magnetic imaging, evidence for three distinct magnetic ground states in lamellae of FGT5 that are stabilized with increasing lamella thickness, namely, a multidomain state, a stripe phase, and an unusual fractal state. In the stripe phase we also observe unconventional type-I and type-II bubbles where the spin texture in the central region of the bubbles is nonuniform, unlike conventional bubbles. In addition, we find a bobber or a cocoon-like spin texture in thick (∼170 µm) FGT5 that emerges from the fractal state in the presence of a magnetic field. Among all the 2D vdW magnets we have thus demonstrated that FGT5 hosts perhaps the richest variety of magnetic phases that, thereby, make it a highly interesting platform for the subtle tuning of magnetic interactions.

3.
Adv Mater ; 35(3): e2207246, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271718

RESUMO

The perovskite SrRuO3 (SRO) is a strongly correlated oxide whose physical and structural properties are strongly intertwined. Notably, SRO is an itinerant ferromagnet that exhibits a large anomalous Hall effect (AHE) whose sign can be readily modified. Here, a hydrogen spillover method is used to tailor the properties of SRO thin films via hydrogen incorporation. It is found that the magnetization and Curie temperature of the films are strongly reduced and, at the same time, the structure evolves from an orthorhombic to a tetragonal phase as the hydrogen content is increased up to ≈0.9 H per SRO formula unit. The structural phase transition is shown, via in situ crystal truncation rod measurements, to be related to tilting of the RuO6 octahedral units. The significant changes observed in magnetization are shown, via density functional theory (DFT), to be a consequence of shifts in the Fermi level. The reported findings provide new insights into the physical properties of SRO via tailoring its lattice symmetry and emergent physical phenomena via the hydrogen spillover technique.

4.
Adv Mater ; 34(11): e2108637, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048455

RESUMO

There is considerable interest in van der Waals (vdW) materials as potential hosts for chiral skyrmionic spin textures. Of particular interest is the ferromagnetic, metallic compound Fe3 GeTe2 (FGT), which has a comparatively high Curie temperature (150-220 K). Several recent studies have reported the observation of chiral Néel skyrmions in this compound, which is inconsistent with its presumed centrosymmetric structure. Here the observation of Néel type skyrmions in single crystals of FGT via Lorentz transmission electron microscopy (LTEM) is reported. It is shown from detailed X-ray diffraction structure analysis that FGT lacks an inversion symmetry as a result of an asymmetric distribution of Fe vacancies. This vacancy-induced breaking of the inversion symmetry of this compound is a surprising and novel observation and is a prerequisite for a Dzyaloshinskii-Moriya vector exchange interaction which accounts for the chiral Néel skyrmion phase. This phenomenon is likely to be common to many 2D vdW materials and suggests a path to the preparation of many such acentric compounds. Furthermore, it is found that the skyrmion size in FGT is strongly dependent on its thickness: the skyrmion size increases from ≈100 to ≈750 nm as the thickness of the lamella is increased from ≈90 nm to ≈2 µm. This extreme size tunability is a feature common to many low symmetry ferro- and ferri-magnetic compounds.

5.
ACS Nano ; 16(4): 6206-6214, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35377608

RESUMO

Oxygen defects and their atomic arrangements play a significant role in the physical properties of many transition metal oxides. The exemplary perovskite SrCoO3-δ (P-SCO) is metallic and ferromagnetic. However, its daughter phase, the brownmillerite SrCoO2.5 (BM-SCO), is insulating and an antiferromagnet. Moreover, BM-SCO exhibits oxygen vacancy channels (OVCs) that in thin films can be oriented either horizontally (H-SCO) or vertically (V-SCO) to the film's surface. To date, the orientation of these OVCs has been manipulated by control of the thin film deposition parameters or by using a substrate-induced strain. Here, we present a method to electrically control the OVC ordering in thin layers via ionic liquid gating (ILG). We show that H-SCO (antiferromagnetic insulator, AFI) can be converted to P-SCO (ferromagnetic metal, FM) and subsequently to V-SCO (AFI) by the insertion and subtraction of oxygen throughout thick films via ILG. Moreover, these processes are independent of substrate-induced strain which favors formation of H-SCO in the as-deposited film. The electric-field control of the OVC channels is a path toward the creation of oxitronic devices.

6.
Adv Mater ; 33(32): e2101323, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34218470

RESUMO

Magnetic nano-objects, namely antiskyrmions and Bloch skyrmions, have been found to coexist in single-crystalline lamellae formed from bulk crystals of inverse tetragonal Heusler compounds with D2d symmetry. Here evidence is shown for magnetic nano-objects in epitaxial thin films of Mn2 RhSn formed by magnetron sputtering. These nano-objects exhibit a wide range of sizes with stability with respect to magnetic field and temperature that is similar to single-crystalline lamellae. However, the nano-objects do not form well-defined arrays, nor is any evidence found for helical spin textures. This is speculated to likely be a consequence of the poorer homogeneity of chemical ordering in the thin films. However, evidence is found for elliptically distorted nano-objects along perpendicular crystallographic directions within the epitaxial films, which is consistent with elliptical Bloch skyrmions observed in single-crystalline lamellae. Thus, these measurements provide strong evidence for the formation of noncollinear spin textures in thin films of Mn2 RhSn. Using these films, it is shown that individual nano-objects can be deleted using a local magnetic field from a magnetic tip and collections of nano-objects can be similarly written. These observations suggest a path toward the use of these objects in thin films with D2d symmetry as magnetic memory elements.

7.
Adv Mater ; 32(7): e1904327, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880023

RESUMO

Over the past decade the family of chiral noncollinear spin textures has continued to expand with the observation in metallic compounds of Bloch-like skyrmions in several B20 compounds, and antiskyrmions in a tetragonal inverse Heusler. Néel like skyrmions in bulk crystals with broken inversion symmetry have recently been seen in two distinct nonmetallic compounds, GaV4 S8 and VOSe2 O5 at low temperatures (below ≈13 K) only. Here, the first observation of bulk Néel skyrmions in a metallic compound PtMnGa and, moreover, at high temperatures up to ≈220 K is reported. Lorentz transmission electron microscopy reveals the chiral Néel character of the skyrmions. A strong variation is reported of the size of the skyrmions on the thickness of the lamella in which they are confined, varying by a factor of 7 as the thickness is varied from ≈90 nm to ≈4 µm. Moreover, the skyrmions are highly robust to in-plane magnetic fields and can be stabilized in a zero magnetic field using suitable field-cooling protocols over a very broad temperature range to as low as 5 K. These properties, together with the possibility of manipulating skyrmions in metallic PtMnGa via current induced spin-orbit torques, make them extremely exciting for future spintronic applications.

8.
Adv Mater ; 32(28): e2002043, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484269

RESUMO

Skyrmions and antiskyrmions are magnetic nano-objects with distinct chiral, noncollinear spin textures that are found in various magnetic systems with crystal symmetries that give rise to specific Dzyaloshinskii-Moriya exchange vectors. These magnetic nano-objects are associated with closely related helical spin textures that can form in the same material. The skyrmion size and the period of the helix are generally considered as being determined, in large part, by the ratio of the magnitude of the Heisenberg to that of the Dzyaloshinskii-Moriya exchange interaction. In this work, it is shown by real-space magnetic imaging that the helix period λ and the size of the antiskyrmion daSk in the D2d compound Mn1.4 PtSn can be systematically tuned by more than an order of magnitude from ≈100 nm to more than 1.1 µm by varying the thickness of the lamella in which they are observed. The chiral spin texture is verified to be preserved even up to micrometer-thick layers. This extreme size tunability is shown to arise from long-range magnetodipolar interactions, which typically play a much less important role for B20 skyrmions. This tunability in size makes antiskyrmions very attractive for technological applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa