Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Nanobiotechnology ; 22(1): 323, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849931

RESUMO

BACKGROUND: The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS: The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION: Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.


Assuntos
Quitosana , Emulsões , Hidrogéis , Nanopartículas Metálicas , Quercetina , Prata , Pele , Cicatrização , Quercetina/química , Quercetina/farmacologia , Cicatrização/efeitos dos fármacos , Quitosana/química , Animais , Emulsões/química , Camundongos , Humanos , Pele/efeitos dos fármacos , Pele/lesões , Nanopartículas Metálicas/química , Prata/química , Hidrogéis/química , Materiais Biocompatíveis/química , Bandagens , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Celulose/química , Masculino , Regeneração/efeitos dos fármacos , Células HaCaT , Oxirredução , Metilgalactosídeos
2.
Mol Ther ; 29(2): 571-586, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33238136

RESUMO

At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética , Animais , Proteína 9 Associada à CRISPR/genética , Desenvolvimento de Medicamentos , Edição de Genes/métodos , Terapia Genética/métodos , Humanos
3.
J Nanobiotechnology ; 20(1): 501, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434667

RESUMO

Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.


Assuntos
Nanopartículas Metálicas , Ácidos Nucleicos , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas
4.
Brain Behav Immun ; 96: 1-4, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022371

RESUMO

Recently, India is at risk due to the exponential rising of COVID-19 infection, which generated a second wave. This infection rise may affect the vaccination program in India, and it can also affect vaccine production. In this manuscript, we have discussed the psychosocial and political factors that have driven the current wave of India. We have also tried to depict the psychosocial and political obstacles that are impairing the vaccination program.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Índia , SARS-CoV-2 , Vacinação
5.
Appl Microbiol Biotechnol ; 105(24): 9035-9045, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34755213

RESUMO

The progression of the COVID-19 pandemic has generated numerous emerging variants of SARS-CoV-2 on a global scale. These variants have gained evolutionary advantages, comprising high virulence and serious infectivity due to multiple spike glycoprotein mutations. As a reason, variants are demonstrating significant abilities to escape the immune responses of the host. The D614G mutation in the S-glycoprotein of SARS-CoV-2 variants has shown the most efficient interaction with the ACE2 receptor of the cells. This explicit mutation at amino acid position 614 (aspartic acid-to-glycine substitution) is the prime cause of infection and re-infection. It changes the conformation of RBD and cleavage patterns S-glycoprotein with higher stability, replication fitness, and fusion efficiencies. Therefore, this review aims to provide several crucial pieces of information associated with the D614 mutational occurrence of SARS-CoV-2 variants and their infectivity patterns. This review will also effectively emphasize the mechanism of action of D614G mutant variants, immune escape, and partial vaccine escape of this virus. Furthermore, the viral characteristic changes leading to the current global pandemic condition have been highlighted. Here, we have tried to illustrate a novel direction for future researchers to develop effective therapeutic approaches and counterweight strategies to minimize the spread of COVID-19.Key points• D614G mutation arises within the S-glycoprotein of significant SARS-CoV-2 variants.• The D614G mutation affects infection, re-infection, cleavage patterns of S-glycoprotein, and replication fitness of SARS-CoV-2 variants.• The D614G mutation influences the immunity and partial vaccine escape.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Mutação , Pandemias , Glicoproteína da Espícula de Coronavírus/genética
6.
J Food Sci Technol ; 58(2): 595-603, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33568853

RESUMO

Functional foods with high nutritive values and potential therapeutic potential is a prerequisite for today's ailing world. Soybeans exert beneficial effects on human health. It contains plentiful polyunsaturated fatty acids and dietary fibers along with several isoflavonoids having bioactivity for improving health. Recent studies have shown that soybean isoflavones can have a positive effect on bone growth. The current study was designed to observe any impact of isoflavone-enriched soy milk powder (I-WSM) on inducing osteogenic properties at cellular and molecular levels. Precisely, we have evaluated the effect of I-WSM on the bone differentiation process. Our results show that I-WSM has the ability to stimulate osteogenic properties in osteoblasts both at the initial and terminal stages of differentiation. Treatment of I-WSM on osteoblasts demonstrates the inductive effect on the expression of osteogenic transcriptional factors like Runx2 and Osterix. Moreover, I-WSM increased the expression of the extracellular matrix protein osteocalcin, required for the formation of scaffold for bone mineralization. The estrogen signaling pathway was utilized by I-WSM to induce osteogenic activity. Taken together, here we report the cellular and molecular events mediated by I-WSM to exert an osteogenic effect in osteoblasts, which will help to understand its mechanism of action and project it as a remedy for the bone-related disease. Taken together, I-WSM has the ability to exert the osteogenic effect in osteoblasts via the estrogen signaling pathway and thus might be projected as a remedy for a bone-related disease like osteoporosis.

7.
J Cell Biochem ; 121(11): 4654-4666, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32100920

RESUMO

Chronic lymphocytic leukemia (CLL), a severe problem all over the world and represents around 25% of all total leukemia cases, is generating the need for novel targets against CLL. Wnt signaling cascade regulates cell proliferation, differentiation, and cell death processes. Thus, any alteration of the Wnt signaling pathway protein cascade might develop into various types of cancers, either by upregulation or downregulation of the Wnt signaling pathway protein components. In addition, it is reported that activation of the Wnt signaling pathway is associated with the transcriptional activation of microRNAs (miRNAs) by binding to its promoter region, suggesting feedback regulation. Considering the protein regulatory functions of various miRNAs, they can be approached therapeutically as modulatory targets for protein components of the Wnt signaling pathway. In this article, we have discussed the potential role of miRNAs in the regulation of Wnt signaling pathway proteins related to the pathogenesis of CLL via crosstalk between miRNAs and Wnt signaling pathway proteins. This might provide a clear insight into the Wnt protein regulatory function of various miRNAs and provide a better understanding of developing advanced and promising therapeutic approaches against CLL.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/patologia , MicroRNAs/genética , Via de Sinalização Wnt , Animais , Biomarcadores Tumorais/genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo
8.
J Med Virol ; 92(11): 2260-2262, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32462717

RESUMO

COVID-19 leads to mortality of several patients and the cytokine storm is reportedly critical in the patients. To reduce the cytokine storm, we would like to propose the interleukin (IL) 6 receptor (IL-6R) antagonist therapy for the COVID-19 patients. Two humanized monoclonal antibodies are in clinical trial following IL-6R antagonist therapies namely tocilizumab and sarilumab. However, researchers and physicians should look for more IL-6R antagonists for the therapy of cytokine storm syndrome severe acute respiratory syndrome coronavirus 2 infected persons to enhance the therapeutic options for cytokine storm.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Receptores de Interleucina-6/antagonistas & inibidores , Anticorpos Monoclonais Humanizados/uso terapêutico , Humanos
9.
J Cell Biochem ; 120(12): 19915-19924, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31318096

RESUMO

Argonaute-2 (AGO2), a member of the Argonaute family, is the only member possessing catalytic and RNA silencing activity. In here, a molecular dynamics (MDs) simulation was performed using the crystal structure of human AGO2 protein complex with miR-20a. miR-20a is involved with various kind of biological process like heart and lung development, oncogenic process, etc. In precise, MD simulation was carried out with AGO2 protein complex with wild type, two mutant sites and four mutant sites in guided microRNA (miRNA). It has been noted that root-mean-square deviation (RMSD) of atomic positions of nucleic acid for wild type and two mutant sites guided miRNA has the same pattern of fluctuations, which stabilizes around 0.27 nm after 2 ns. Cα atom of AGO2 protein in the complex shows that this complex with wild type and two mutant site mutation duplex has a stable RMSD value after 20 ns, ranging between 0.14 and 0.21 nm. From the root-mean-square fluctuation (RMSF), we observed an increased pattern of fluctuations for the atoms of four mutant complex of AGO2-miR-20a complex. This increased RMSF of non-mutated nucleic acids is contributed by U-A bond breaking at the site of the nucleotide of U2 of guided miRNA, as observed from the duplex structure taken at different time steps of the simulation. Superimposed structure of the miRNA-mRNA duplex for the three complexes depicts that the three miRNA-mRNA duplexes are stable during the simulation. Current work demonstrates the possible correlations between the conformational changes of this AGO2-miR-20a duplex structure and the interactions of different atoms.


Assuntos
Proteínas Argonautas/química , MicroRNAs/química , Proteínas Argonautas/metabolismo , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ácidos Nucleicos Heteroduplexes/química , RNA Mensageiro
10.
Molecules ; 23(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189672

RESUMO

Coptidis rhizome contains several alkaloids that are bioactive agents of therapeutic value. We propose an eco-friendly method to synthesize biocompatible silver nanoparticles (AgNPs) using the aqueous extract of Coptidis rhizome. Silver ions were reduced to AgNPs using the aqueous extract of Coptidis rhizome, indicating that Coptidis rhizome can be used for the biosynthesis of AgNPs. The time and the concentration required for conversion of silver ions into AgNPs was optimized using UV-absorbance spectroscopy and inductively coupled plasma spectroscopy (ICP). Biosynthesized AgNPs showed a distinct UV-Visible absorption peak at 420 nm. ICP analysis showed that the time required for the completion of biosynthesis was around 20 min. Microscopic images showed that nanoparticles synthesized were of spherical shape and the average diameter of biosynthesized AgNPs was less than 30 nm. XRD analysis also confirmed the size of AgNps and revealed their crystalline nature. The interaction of AgNPs with phytochemicals present in Coptidis rhizome extract was observed in FTIR analysis. The antimicrobial property of AgNPs was evaluated using turbidity measurements. Coptidis rhizome-mediated biosynthesized AgNPs showed significant anti-bacterial activities against Escherichia coli and Staphylococcus aureus that are commonly involved in various types of infections, indicating their potential as an effective anti-bacterial agent.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas , Plantas Medicinais/química , Rizoma/química , Prata , Anti-Infecciosos/síntese química , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Molecules ; 23(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189681

RESUMO

Coptidisrhizome contains several alkaloids that are bioactive agents of therapeutic value. We propose an eco-friendly method to synthesize biocompatible silver nanoparticles (AgNPs) using the aqueous extract of Coptidisrhizome. Silver ions were reduced to AgNPs using the aqueous extract of Coptidisrhizome, indicating that Coptidisrhizome can be used for the biosynthesis of AgNPs. The time and the concentration required for conversion of silver ions into AgNPs was optimized using UV-absorbance spectroscopy and inductively coupled plasma spectroscopy (ICP). Biosynthesized AgNPs showed a distinct UV-Visible absorption peak at 420 nm. ICP analysis showed that the time required for the completion of biosynthesis was around 20 min. Microscopic images showed that nanoparticles synthesized were of spherical shape and the average diameter of biosynthesized AgNPs was less than 30 nm. XRD analysis also confirmed the size of AgNps and revealed their crystalline nature. The interaction of AgNPs with phytochemicals present in Coptidisrhizome extract was observed in FTIR analysis. The antimicrobial property of AgNPs was evaluated using turbidity measurements. Coptidisrhizome-mediated biosynthesized AgNPs showed significant anti-bacterial activities against Escherichia coli and Staphylococcus aureus that are commonly involved in various types of infections, indicating their potential as an effective anti-bacterial agent.

12.
Korean J Physiol Pharmacol ; 22(5): 503-511, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181697

RESUMO

Lysophosphatidic acid (LPA) is known to play a critical role in breast cancer metastasis to bone. In this study, we tried to investigate any role of LPA in the regulation of osteoclastogenic cytokines from breast cancer cells and the possibility of these secretory factors in affecting osteoclastogenesis. Effect of secreted cytokines on osteoclastogenesis was analyzed by treating conditioned media from LPA-stimulated breast cancer cells to differentiating osteoclasts. Result demonstrated that IL-8 and IL-11 expression were upregulated in LPA-treated MDA-MB-231 cells. IL-8 was induced in both MDA-MB-231 and MDA-MB-468, however, IL-11 was induced only in MDA-MB-231, suggesting differential LPARs participation in the expression of these cytokines. Expression of IL-8 but not IL-11 was suppressed by inhibitors of PI3K, NFkB, ROCK and PKC pathways. In the case of PKC activation, it was observed that PKCδ and PKCµ might regulate LPA-induced expression of IL-11 and IL-8, respectively, by using specific PKC subtype inhibitors. Finally, conditioned Medium from LPA-stimulated breast cancer cells induced osteoclastogenesis. In conclusion, LPA induced the expression of osteolytic cytokines (IL-8 and IL-11) in breast cancer cells by involving different LPA receptors. Enhanced expression of IL-8 by LPA may be via ROCK, PKCu, PI3K, and NFkB signaling pathways, while enhanced expression of IL-11 might involve PKCδ signaling pathway. LPA has the ability to enhance breast cancer cells-mediated osteoclastogenesis by inducing the secretion of cytokines such as IL-8 and IL-11.

13.
Biochim Biophys Acta ; 1865(2): 190-203, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26899266

RESUMO

PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Ciclo Celular , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Transformação Celular Neoplásica , Centrossomo/fisiologia , Citocinese , Dano ao DNA , Humanos , Microtúbulos/fisiologia , Quinase 1 Polo-Like
14.
Int J Mol Sci ; 18(3)2017 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287489

RESUMO

Osteoarthritis (OA) is a degenerative disease of the joints and is one of the leading causes of disability in adults. However, there are no key therapeutics for OA and medical treatment is based on managing the symptoms and slowing down progression of the disease. Diagnostics based on clinical examination and radiography have provided little information about metabolic changes in joint tissues, disease onset and progression. Due to lack of effective methods for early detection and evaluation of treatment outcome, the measurement of biochemical markers (biomarkers) shows promise as a prospective method aiding in disease monitoring. OA biomarkers that are present in biological fluids such as blood, urine and synovial fluid, sources that are easily isolated from body, are of particular interest. Moreover, there are increasingly more studies identifying and developing new biomarkers for OA. In this review, efforts have been made to summarize the biomarkers that have been reported in recent studies on patients. We also tried to classify biomarkers according to tissue metabolism (bone, cartilage and synovial metabolism markers), pathological pathways (inflammatory and genetic markers) and biological function (chemokines, growth factors, acute phase proteins, etc.).


Assuntos
Citocinas/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Citocinas/sangue , Humanos , MicroRNAs/sangue , Osteoartrite/sangue , Osteoartrite/genética , Osteoartrite/patologia
15.
Korean J Physiol Pharmacol ; 21(2): 205-213, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28280414

RESUMO

Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

16.
Med Res Rev ; 36(3): 425-39, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26786912

RESUMO

Rheumatoid arthritis (RA) is an inflammatory disease that primarily affects joints. This autoimmune disease pathogenesis is related to cytokine signaling. In this review, we have described the existence of various microRNAs (miRNAs) involved in regulation of major protein cascades of cytokine signaling associated with RA. Moreover, we have tried to portray the role of various miRNAs in different cytokines such as TNF-α, IL-1, IL-6, IL-10, IL-17, IL-18, IL-21, and granulocyte macrophage colony-stimulating factor (GMCSF). Along with this, we have also discussed the miRNA regulation in T cells and synovial tissue. From the analyzed data, we suggest that miR-146a and miR-155 might be the potential therapeutic target for treating RA. The insight illustrated in this review will offer a better understanding of the role of miRNA in cytokine signaling pathways and inflammation during RA and could project them as diagnostic or therapeutic agents in near future.


Assuntos
Artrite Reumatoide/genética , Citocinas/metabolismo , Inflamação/genética , MicroRNAs/genética , Transdução de Sinais/genética , Humanos
17.
J Nanobiotechnology ; 14(1): 65, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27544212

RESUMO

Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world's total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued.


Assuntos
Modelos Animais de Doenças , Nanopartículas Metálicas/toxicidade , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Testes de Toxicidade
18.
Molecules ; 21(1): E108, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26797598

RESUMO

Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Suplementos Nutricionais , Nanomedicina , Quercetina/química , Quercetina/farmacologia , Animais , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Quercetina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos
20.
Pharm Res ; 32(2): 723-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25186442

RESUMO

PURPOSE: To overcome the therapeutic restrictions offered by hydrophobic quercetin (Qu), this study aims to synthesize MPEG-PLA encapsulated Qu nanoparticle and to evaluate their anticancer efficacy. MATERIALS AND METHODS: In vitro anticancer potential and apoptotic studies were done by cell cytotoxicity assay and flow cytometry, respectively. MPEG-PLA-Qu nanoparticles were evaluated for anticancer efficacy in vivo using xenograft mice model. TUNEL assay was performed to observe the frequency of apoptotic cells in vivo. RESULTS: The hydrodynamic particle size, polydispersity index, zeta potential and drug loading % of MPEG-PLA-Qu nanoparticle was 155.3 ± 3.2 nm, 0.2 ± 0.05, -3.14 mV and 5.3 ± 1.1%, respectively. Also, MPEG-PLA-Qu showed sustained drug release for 10 days. In vitro results showed that MPEG-PLA-Qu could efficiently induce apoptosis in triple negative breast cancer cell line (MDA-MB-231) with higher amount of quercetin in cell lysate treated with MPEG-PLA-Qu in comparison to free quercetin. In xenograft model for breast cancer, peritumorally injected MPEG-PLA-Qu significantly inhibited the tumor growth. Moreover, TUNEL assay showed more occurrence of apoptotic cells in MPEG-PLA-Qu treated tumors compared to free quercetin at similar dose. CONCLUSION: Our data suggest that MPEG-PLA-Qu nanoparticle can have a promising clinical potential for the treatment of breast cancer.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama , Nanopartículas/administração & dosagem , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Quercetina/administração & dosagem , Animais , Antineoplásicos/química , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Poliésteres/química , Polietilenoglicóis/química , Quercetina/química , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa