Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Waste Manag Res ; 40(10): 1514-1526, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35257599

RESUMO

This study aims to use landfill leachate (LL) as an aqueous medium during hydrothermal carbonisation (HTC) of food waste to produce hydrochar (FWH-LL-C), which could be used as an electrode material in energy storage devices. The structural properties and electrochemical performance of the hydrochar were compared to that obtained using distilled water as a reaction medium (FWH-DW-C). The results showed that there is a difference in Brunauer-Emmett-Teller (BET) surface area of FWH-LL-C (220 m2 gm-1) and FWH-DW-C (319 m2 gm-1). The electrochemical properties were comparable, with FWH-LL-C having 227 F g-1 specific capacitance at 1 A g-1 current density and FWH-DW-C having 235 F g-1 specific capacitance at 1 A g-1 current density. Furthermore, at a power density of 634 W kg-1, FWH-DW-C achieved the highest energy density of 14.4 Wh kg-1. The energy retention capacity of the electrode was 98% which indicate that the material has an excellent energy storage capacity. The findings suggested that LL could be used as an alternative source of aqueous media during the HTC of food waste to produce hydrochar which could be used as an effective electrode material in supercapacitors.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Carbono/química , Eletrodos , Alimentos , Temperatura , Água
2.
Resour Conserv Recycl ; 162: 105052, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32834486

RESUMO

The crisis brought upon by the COVID-19 pandemic has altered global waste generation dynamics and therefore has necessitated special attention. The unexpected fluctuations in waste composition and quantity also require a dynamic response from policymakers. This study highlights the challenges faced by the solid waste management sector during the pandemic and the underlying opportunities to fill existing loopholes in the system. The study presents specific cases for biomedical waste, plastic waste, and food waste management - all of which have been a major cause of concern during this crisis. Further, without active citizen participation and cooperation, commingled virus-laden biomedical waste with the regular solid waste stream pose significant negative health and safety issues to sanitation workers. Single-use plastic usage is set to bounce back due to growing concerns of hygiene, particularly from products used for personal protection and healthcare purposes. It is expected that household food waste generation may reduce due to increased conscious buying of more non-perishable items during lockdown and due to concerns of food shortage. However, there is a chance of increase in food waste from the broken supply chains such as food items getting stuck on road due to restriction in vehicle movements, lack of workers in the warehouse for handling the food products, etc. The study also stresses the need for building localized resilient supply chains to counter such situations during future pandemics. While offering innovative solutions to existing waste management challenges, the study also suggests some key recommendations to the policymakers to help handle probable future pandemics if any holistically.

3.
Sci Total Environ ; 944: 173883, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866142

RESUMO

The study explores the effect of varying molasses proportions as a binder on the characteristics of densified char obtained through the slow co-pyrolysis of plastic waste and Eucalyptus wood waste (Waste low-density polyethylene - Eucalyptus wood (WLDPE-EW) and Waste Polystyrene - Eucalyptus wood (WPS-EW)). Pyrolysis was conducted at 500 °C with a residence time of 120 min, employing plastic to wood waste ratios of 1:2 and 1:3 (w/w). The focus was on how varying the proportion of molasses (10-30 %), influences the physical and combustion properties of the resulting biofuel pellets. Our findings reveal that the calorific value of the pellets decreased from 28.94 to 27.44 MJ/Kg as the molasses content increased. However, this decrease in calorific value was compensated by an increase in pellet mass density, which led to a higher energy density overall. This phenomenon was attributed to the formation of solid bridges between particles, facilitated by molasses, effectively decreasing particle spacing. The structural integrity of the pellets, as measured by the impact resistance index, improved significantly (43-47 %) with the addition of molasses. However, a significant change in the combustion characteristics depicted by lower ignition and burnout temperatures were observed due to decrease in fixed carbon value and increase in volatile matter content, as the proportion of molasses increased. Despite these changes, the pellets demonstrated a stable combustion profile, suggesting that molasses are an effective binder for producing biofuel pellets through the densification of char derived from the co-pyrolysis of plastic and Eucalyptus wood waste. The optimized molasses concentration analyzed through multifactor regression analysis was 16.96 % with 28 % WLDPE proportion to produce WLDPE-EW char pellets. This study highlights the potential of using molasses as a sustainable binder to enhance the mechanical and combustion properties of biofuel pellets, offering a viable pathway for the valorization of waste materials.

4.
Sci Total Environ ; 945: 173893, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889821

RESUMO

Bioplastics have long been publicized as a sustainable plastic packaging alternative; however, their widespread industrialization is still embryonic due to complex challenges spanning multiple sectors. This review critically analyses the bioplastic lifecycle and provides a holistic evaluation of both the opportunities and potential trade-offs along their value chain. Their lifecycle is divided into three sectors: 1) resources, extraction, and manufacturing, 2) product consumption which discusses availability, consumer perception, and marketing strategies, and 3) end-of-life (EoL) management which includes segregation, recycling, and disposal. In the production phase, the primary challenges include selection of suitable raw feedstocks and addressing the techno-economic constraints of manufacturing processes. To tackle these challenges, it is recommended to source sustainable feedstocks from innovative, renewable, and waste materials, adopt green synthesis mechanisms, and optimize processes for improved efficiency. The consumption phase encompasses challenges related to market availability, cost competitiveness, and consumer perception of bioplastics. Localizing feedstock sourcing and production, leveraging the economics of scale, and promoting market demand for recycled bioplastics can positively influence the market dynamics. Additionally, dispelling misconceptions about degradability through proper labeling, and employing innovative marketing strategies to enhance consumer perception of the mechanical performance and quality of bioplastics is crucial. During the EoL management phase, major challenges include inadequate awareness, inefficient segregation protocols, and bioplastics with diverse properties that are incompatible with existing waste management infrastructure. Implementing a standardized labeling system with clear representation of suitable EoL techniques and integrating sensors and machine learning-based sorting technologies will improve segregation efficiency. Further, establishing interconnected recycling streams that clearly define the EoL pathways for different bioplastics is essential to ensure circular waste management systems. Finally, designing a comprehensive systems-based policy framework that incorporates technical, economic, environmental, and social drivers is recommended to promote bioplastics as a viable circular packaging solution.

5.
Sci Total Environ ; 864: 161148, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572318

RESUMO

Due to the ubiquitous nature of microplastic (MP), knowledge of its fate and migration in subsurface environments like soil becomes extremely important to understand underlying ecological risk. The fate and migration of MP in subterranean settings like sand are governed by the retention/transport properties influenced by the interaction of sand and MPs. In this study, sand column experiments under simulated rainfall conditions were conducted for 180 days to assess the vertical migration of mixed MPs consisting of polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET). Sand column experiments were subjected to 60 wet-dry cycles over 180 days. The effects of polymer type, microplastic size, sand particle size, and surface roughness on the migration of MPs were evaluated. Results showed that the smallest-sized fragmented PE particles had the highest migration potential compared to PET and PE. The ratios of the diameters of MP particles and sand particles (dMP/dsand) played a significant role in determining the penetration depth of the various sizes of MPs. The MP particles with dMP/dsand 0.11 showed greater penetration depth in sand media and were detected in the column effluent water after 60 days of a column run. In addition, surface roughness, low ionic strength water, irregularly shaped particles, and wet and dry cycles contributed to the migration of MPs in the sand column. Three new absorbance peaks corresponding to the hydroxyl, CO stretch, and carbonyl groups evolved in the extracted PE MPs sample from different depths, as shown by FTIR analysis, suggesting that PE MPs had been oxidised. XPS analysis revealed changes in the surface properties of the MPs, indicating that oxidation occurred at the top layer, causing structural deterioration of the PE MPs. However, oxidation of the surface bonds was restricted in the layers underneath due to a lack of oxygen. The finding of the study suggests that in a natural environment, such accumulation and migration of MPs in sandy soil can increase the possibilities to the underlying groundwater contamination.

6.
J Hazard Mater ; 453: 131387, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080035

RESUMO

Cigarettes butt (CB) is one of the most littered items on the planet. This paper critically analyzes the factors responsible for CB littering, and associated environmental ramifications, and reviews all the possible technical, behavioural, and policy-based solutions. Even while smoking has declined globally, middle-income nations have seen an increase in consumption, which may be related to increased affordability and a lack of public awareness. The smokers' individual beliefs and habits, environmental ignorance, covert littering as a result of social taboos associated with smoking, and behavioural gaps between intention and action might all be contributing factors to CBs' littering behaviour. The low biodegradability of cellulose acetate filters and toxic chemical leaching from CBs are the most important aspects of CB environmental toxicity. The small size and low economic value of CB contribute to the inefficiencies of current waste collection and management systems. The current research on CB valorisation includes fired-clay bricks, asphalt concrete, biofilms, sound absorber, cellulose pulp, pesticides, and insecticides as downstream mitigation strategies. This study highlights the urgent need for policymakers to enforce regulations enabling innovative cigarette designs, the creation of deposit-refund schemes, extended producer responsibility and stringent waste collection mechanisms. Adopting gentler marketing strategies and non-confrontational behavioural nudges could result in an overall reduction in CB pollution.


Assuntos
Produtos do Tabaco , Fumar , Poluição Ambiental , Substâncias Perigosas , Políticas
7.
Chemosphere ; 317: 137822, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649897

RESUMO

Food demand is expected to increase globally by 60-110% from 2005 to 2050 due to diet shifts and population growth. This growth in food demand leads to the generation of enormous agri-food wastes (AFWs), which could be classified into pre-consumption and post-consumption. The AFW represents economic losses for all stakeholders along food supply chains, including consumers. It is reported that the direct financial, social, and environmental costs of food waste are 1, 0.9, and 0.7 trillion USD/year, respectively. Diverse conventional AFW management approaches are employed at the different life cycle levels (entre supply chain). The review indicates that inadequate transportation, erroneous packaging, improper storage, losses during processing, contamination, issues with handling, and expiry dates are the main reason for the generation of AFWs in the supply chain. Further, various variables such as cultural, societal, personal, and behavioral factors contribute to the AFW generation. The selection of a specific valorization technology is based on multiple physicochemical and biological parameters. Furthermore, other factors like heterogeneity of the AFWs, preferable energy carriers, by-products management, cost, end-usage applications, and environmental legislative and disposal processes also play a crucial role in adopting suitable technology. Valorization of AFW could significantly impact both economy and the environment. AFWs have been widely investigated for the development of engineered added-value biomaterials and renewable energy production. Considering this, this study has been carried out to highlight the significance of AFW cost, aggregation, quantification, and membrane-based strategies for its management. The study also explored the satellite remote sensing data for Spatio-temporal monitoring, mapping, optimization, and management of AFW management. Along with this, the study also explained the most recent strategies for AFW valorization and outlined the detailed policy recommendation along with opportunities and challenges. The review suggested that AFW should be managed using a triple-bottom-line strategy (economic, social, and environmental sustainability).


Assuntos
Alimentos , Eliminação de Resíduos , Tecnologia de Sensoriamento Remoto
8.
Sci Total Environ ; 806(Pt 4): 150748, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648829

RESUMO

The commercial success of hydrothermal carbonization (HTC) is contingent on seeking solutions for the downstream wastewater (process water) generated during the process which is still regarded largely as a nuisance. In the present study, the reusability and valorization strategy of process wastewater generated during co-HTC of organic fraction of municipal solid waste (food and yard waste) at 220 °C for 1 h was established. The process wastewater was anaerobically digested in the first part to determine its methane-generating capacity; and in the second part, it was recirculated up to five times to understand the evolution of physicochemical and fuel characteristics of hydrochar. The process water was characterized by the presence of high total organic carbon (up to 40 g/L) and chemical oxygen demand (up to 96 g/L). The decreasing trend of heavy metals with increasing recirculation suggested possible adsorption/immobilization mechanism taking place to the hydrochar surface. The process water generated from co-HTC condition has anaerobic biodegradability of 72% while experimental and theoretical methane yield observed were 224 mL/g COD and 308 mL/g COD, respectively. The presence of high organic and ionic species in recirculated process water promoted the overall carbonization process which was evident from the increased energy yield (86 to 92%), carbon content (68 to 71%) and calorific value (20 to 27 MJ/kg). The recirculation also enhanced overall combustion characteristics of hydrochar as analyzed by thermogravimetric analysis. The recirculation strategy enhanced fuel properties of hydrochar while making sure upstream and downstream water related burden is reduced (as illustrated by life cycle analysis) to create a cleaner production system for renewable solid biofuels production.


Assuntos
Resíduos Sólidos , Águas Residuárias , Biocombustíveis , Carbono , Alimentos , Temperatura
9.
Sci Total Environ ; 780: 146645, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030301

RESUMO

With the steady growth in the worldwide solar installed capacity, there is an immediate concern about the fate of the solar panels at the end of their life. Solar panel waste is often disposed of indiscriminately, exposing the environment to chemical hazards. The major objective of the current study was to evaluate the leaching potential of the polycrystalline solar panel waste under different simulated disposal conditions through toxicity characteristic leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP) and pH static leaching procedure tests. Moreover, the study evaluates the effects of ageing and the breakage of the Glass Laminate Encapsulation (GLE) of solar panels on their leaching potential. Among the metals studied (silver (Ag), aluminium (Al), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn)), the concentrations of Pb were as high as 9.3 mg/L, 1.4 mg/L, 6.7 mg/L in the TCLP, SPLP, and pH static test respectively. This indicated the hazardous nature of the waste with leaching potential of Pb above the permissible limits stipulated by various regulatory bodies. The presence of GLE reduced the mobility of Pb by a factor of 4.1-8.8 in the TCLP test, thereby rendering the waste as non-hazardous for its disposal in a landfill. However, the indiscriminate disposal of solar panel waste in the natural environment as simulated by the SPLP test indicated its harmful nature irrespective of the physical condition. Ageing of the solar panels before disposal and acidic pH conditions also positively influenced the leaching potential of the selected metals subjected to their reactivity and the accessibility of internal layers of waste to the leaching solution. Strategies such as extended producer responsibilty, advance-recycling fee, and incentivizing the recycling industry will lead to both economic benefit creation and effective waste management of this waste stream.

10.
Bioresour Technol ; 320(Pt B): 124410, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221642

RESUMO

Hydrothermal carbonization (HTC) of yard waste (YW) and food waste (FW) was performed in landfill leachate (LL) to overcome the unnecessary exploitation of our limited natural resources. The physicochemical properties and combustion behavior of the resulting hydrochars were compared with those obtained using distilled water (DW) as reaction medium. Although performing HTC in LL led to lower hydrochar mass yields (43% YWH and 36% FWH) than DW (47.1% YWH and 41.5% FWH), it had minimal impact on the fuel characteristics of the hydrochars. Notably, the higher heating value of the hydrochars prepared in LL (22.8 MJ kg-1 for YWH and 30.2 MJ kg-1 for FWH) is comparable to that of conventional solid fuels, and may, therefore, be considered as inexpensive alternatives to fossil fuels. Overall, the results of this study conclusively suggest that the use of LL as an alternative moisture source can significantly improve the sustainability of HTC technology.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Biocombustíveis , Carbono , Alimentos , Resíduos Sólidos , Temperatura
11.
Sci Total Environ ; 750: 141514, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835961

RESUMO

The advent of the COVID-19 pandemic has enhanced the complexities of plastic waste management. Our improved, hyper-hygienic way of life in the fear of transmission has conveniently shifted our behavioral patterns like the use of PPE (Personal protective equipment), increased demand for plastic-packaged food and groceries, and the use of disposable utensils. The inadequacies and inefficiencies of our current waste management system to deal with the increased dependence on plastic could aggravate its mismanagement and leakage into the environment, thus triggering a new environmental crisis. Mandating scientific sterilization and the use of sealed bags for safe disposal of contaminated plastic wastes should be an immediate priority to reduce the risk of transmission to sanitation workers. Investments in circular technologies like feedstock recycling, improving the infrastructure and environmental viability of existing techniques could be the key to dealing with the plastic waste fluxes during such a crisis. Transition towards environmentally friendly materials like bioplastics and harboring new sustainable technologies would be crucial to fighting future pandemics. Although the rollbacks and relaxation of single-use plastic bans may be temporary, their likely implications on the consumer perception could hinder our long-term goals of transitioning towards a circular economy. Likewise, any delay in building international willingness and participation to curb any form of pollution through summits and agendas may also delay its implementation. Reduction in plastic pollution and at the same time promoting sustainable plastic waste management technologies can be achieved by prioritizing our policies to instill individual behavioral as well as social, institutional changes. Incentivizing measures that encourage circularity and sustainable practices, and public-private investments in research, infrastructure and marketing would help in bringing the aforementioned changes. Individual responsibility, corporate action, and government policy are all necessary to keep us from transitioning from one disaster to another.


Assuntos
Infecções por Coronavirus , Pandemias , Plásticos , Pneumonia Viral , Gerenciamento de Resíduos , Betacoronavirus , COVID-19 , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
12.
Sci Total Environ ; 800: 149605, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426367

RESUMO

The COVID-19 pandemic and the ensuing socioeconomic crisis has impeded progress towards the UN Sustainable Development Goals (UN-SDGs). This paper investigates the impact of COVID 19 on the progress of the SDGs and provides insight into how green recovery stimulus, driven by circular economy (CE)-based solid waste management (SWM) could assist in attaining the intended targets of UN-SDG. It was understood in this review that the guiding principles of the UN-SDGs such as, public health, environmental concerns, resource value and economic development are similar to those that have driven the growth of waste management activities; thus, in order to achieve the goals of UN-SDG, a circular economy approach in solid waste management system should be prioritized in the post-COVID economic agenda. However, policy, technology and public involvement issues may hinder the shift to the CE model; therefore, niche growth might come from developing distinctive waste management-driven green jobs, formalizing informal waste pickers and by focusing in education and training of informal worker. The review also emphasized in creating green jobs by investing in recycling infrastructure which would enable us to address the climate change related concerns which is one of the key target of UN- SDG. The CE-based product designs and business models would emphasize multifunctional goods, extending the lifespan of products and their parts, and intelligent manufacturing to help the public and private sectors maximise product utility (thus reducing waste generation) while providing long-term economic and environmental benefits. The study also recommended strong policies that prioritized investments in decentralization of solid waste systems, localization of supply chains, recycling and green recovery, information sharing, and international collaboration in order to achieve the UN-SDGs.


Assuntos
COVID-19 , Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Pandemias , Reciclagem , SARS-CoV-2 , Resíduos Sólidos/análise , Desenvolvimento Sustentável , Nações Unidas
13.
Waste Manag ; 118: 521-533, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980731

RESUMO

In this study, Co-HTC of food waste with yard waste was conducted for biofuel pellets production, and also to understand any possible synergy between two feedstock types. The calorific value of blended raw feedstock was 13.5 MJ/kg which increased to 27.6 MJ/kg after Co-HTC at 220 °C for 1 h. Energy yield and fuel ratio calculated was 45% and 0.65 respectively. Hydrochar produced demonstrated a stable combustion profile as compared to reactive combustion profile for raw samples. The blend of food and yard waste hydrochar was easily pelletized, and its pellets showed improvement in mechanical properties as compared to pellets made from mono-substrate((food waste) hydrochar. Pellets produced from the blend of food and yard waste hydrochar showed higher energy (46.4 MJ/m3) and mass density (1679 kg/m3) as compare to the pellet produced from food waste hydrochar alone. Tensile strength obtained for the blended hydrochar pellet was 2.64 MPa while same for the pellets produced from food waste hydrochar alone was 1.30 MPa. In addition to improving hydrophobicity, soften lignin from yard waste also helped in binding the food waste hydrochar particles together within the pellets matrix during heated pelletization. The results presented in the study indicated that in the presence of all favorable conditions, there is a potential that approximately 11% of the global coal consumption could be replaced by the combustion of hydrochar produced from food and yard waste globally.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Carbono , Alimentos , Temperatura
14.
Sci Total Environ ; 706: 135907, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846879

RESUMO

Developing a treatment technology which minimizes the production of by-product (waste) is need of an hour. In this study, municipal yard waste (primary raw material) was microwave-pretreated before anaerobic digestion (AD) to improve biogas production. The anaerobically digested, Pretreated Yard Waste (PTY) and the Untreated Yard Waste (UTY) (waste/secondary raw material) was Hydrothermally Carbonized as a downstream treatment technique to produce energy rich hydrochar. The Hydrothermal carbonization (HTC) was conducted at a temperature of 180 °C and 200 °C for 6 h to produce carbon-rich hydrochar. Physicochemical, structural and combustion properties of PTY and UTY hydrochar were characterized and compared using a range of techniques to gain detailed insight into individual hydrochar samples. Microwave pretreatment of yard waste enhanced the biogas production from 264 ± 11 mL/g VS to 370 ± 14 mL/g VS. The carbon content and higher heating value of digestate increased considerably from 44 and 44.35% to 53-56% and15-16 MJ/kg to 21-23 MJ/kg, respectively after HTC. Thermal gravimetric analysis of the prepared hydrochar showed that the high-temperature carbonization increased the combustion properties of hydrochar. The hydrochar prepared from PTY showed enhanced physicochemical, structural and combustion properties as compared to hydrochar prepared from UTY. The finding asserted that the pretreatment of yard waste before AD not only improved biogas production but also improved yield with better quality hydrochar when its resulting digestate was hydrothermally carbonized. AD of yard waste yields biogas and HTC of the resulting digestate yields hydrochar; both are biofuel, hence, augmenting HTC as a downstream treatment process along with AD would result in the creation of near-zero loss process.


Assuntos
Biocombustíveis , Resíduos Sólidos , Anaerobiose , Carbono , Temperatura
15.
Waste Manag ; 91: 108-119, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31203932

RESUMO

Yard waste is either dumped or is being openly burned to get rid of it, instead of using it as a valuable renewable energy source. In this study, hydrothermal carbonization of yard waste was conducted to valorize it as a solid bio fuel, using a batch reactor. The effect of process parameter on yield, energy and physicochemical properties of the valorized solid bio fuel (hydrochar) was examined in this study by varying reaction temperature (160-200 °C for 2 h) and reaction time (2-24 h at 200 °C). The calorific value of hydrochar was within a range of 17.72-24.59 MJ/kg as compared to 15.37 MJ/kg for untreated yard waste. Hydrochar mass yield decreased from 78.6% at operating temperature - time of 160 °C -2 h to 45.6% at 200 °C -24 h. The plot of atomic ratios (H/C and O/C) demonstrates improvement in the coalification process which was mainly governed by decarboxylation and dehydration reactions. The grindability of the prepared hydrochar was comparable to that of coal. Hydrochar produced at lower reaction condition (160-200 °C at 2 h) have better flowability as compared to that produced at higher reaction condition (4-24 h at 200 °C). The reaction time longer than 12 h has a minimal effect on the yield, energy and physicochemical properties of hydrochar. Increasing reaction time and temperature improved the ignition and burnt temperature of hydrochar. All reaction condition has an energy ratio (energy output to energy input) of more than one making HTC process a net energy producer.


Assuntos
Carbono , Carvão Mineral , Temperatura
16.
Sci Total Environ ; 690: 261-276, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288117

RESUMO

Food waste constitutes a remarkable portion of municipal solid waste. About one-third of the global food waste produced is lost with the food supply chain. Food waste in many countries is still dumped of in landfill or incinerated simultaneously with other municipal wastes. Food waste requires proper management and recycling techniques in order to minimise its environmental burden and risk to human life. Despite considerable research on food waste conversion still, there is a shortage of comprehensive reviews of the published literature. In this review, we provide a mini global perspective of food waste with special emphasis on New Zealand and their conversion into the useful material through hydrothermal carbonisation (HTC). Other thermal technologies such as incineration and pyrolysis are also briefly discussed. The review discusses why HTC is more suitable thermal technology than others, which are currently available. Recognising the importance of techno-economic feasibility of HTC, we present a cost analysis on the production of value-added products via HTC with examples taken from the literature to gather information in the feasibility assessment process. Finally, key challenges and future directions for a better productive way of handling food waste are being suggested.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa