Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(4): 131, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947279

RESUMO

In this study, the diversity of diazotrophic bacteria of orchid Rhynchostylis retusa (L.) Blume and its potential application in plant growth promotion were evaluated. About 183 nitrogen-fixing bacteria were isolated to screen various plant growth-promoting traits viz. phosphate solubilization,IAA, siderophore, HCN, biofilm and ammonia production. Based on 16S rRNA gene sequencing analysis Achromobacter, Arthrobacter, Acinetobacter, Bacillus, Brevibacterium, Curtobacterium, Erwinia, Kosakonia, Lysinibacillus, Klebseilla, Microbacterium, Mixta, Pantoea, Pseudomonas and Stenotrophomonas isolates were selected and showed positive results for PGP traits. Overall, genus Pantoea, Brevibacterium, Achromobacter, Arthrobacter, Klebsiella, Mixta, Bacillus, and Pseudomonas had the most pronounced PGP characteristics and acetylene reduction among the screened isolates. BOX PCR fingerprinting analysis showed variation in polymorphic banding patterns among diazotrophic strains. PCR amplification of nifH gene and the presence of 37 kDa nitrogenase reductase enzyme band in western blot indicated presence of nitrogenase activity. Our study showed that orchid R. retusa diazotroph interaction helps orchid plant to fix nitrogen, essential nutrients, and control pathogen entry. To the best of our knowledge, this is the first report on characterization of diazotrophic bacterial community from aerial roots of R. retusa.


Assuntos
Bacillus , Bactérias , RNA Ribossômico 16S/genética , Bactérias/genética , Desenvolvimento Vegetal , Bacillus/genética , Raízes de Plantas/microbiologia
2.
Front Plant Sci ; 13: 1037109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518501

RESUMO

Root-associated bacteria strongly affect plant growth and development by synthesizing growth regulators and stress-relieving metabolites. The present study is mainly focused on assessing aerial root-associated bacteria of Rhynchostylis retusa (L.) Blume is an endemic epiphytic orchid responsible for auxin production and influencing plant growth. A bacterial isolate, Microbacterium testaceum Y411, was found to be the most active producer of indole-3-acetic acid (IAA). The maximum IAA production (170µg/mL) was recorded with the bacterium at optimum process parameters such as pH 7, temperature 30°C, and tryptophan 1000 µg/mL in a culture medium for 48 h. The extracted auxin was purified and analyzed by FT-IR, HPLC, and HR-MS, indicating bacterial auxin has a similar mass value to 4-chloroindole-3-acetic acid auxin. Furthermore, the bacterial auxin was tested on in vitro propagation of orchid, Cymbidium aloifolium, and 90% seed germination was recorded in Murashige and Skoog's medium supplemented with bacterial auxin. The novel results obtained in this study are used for agricultural applications and the Microbacterium testaceum Y411 is a valuable biotechnological resource for a natural auxin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa