Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(11): 212, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053338

RESUMO

Rice straw decomposition is an attractive solution to open-field burning but the traditional method has slow kinetics and takes 60-90 days to obtain mature compost. In this study, we propose to boost up the decomposition process by addition of a novel microbial consortium rich in lignocellulolytic microbes. C: N ratio of the compost reached 11.69% and degradation efficiency of cellulose and hemicellulose was found to be 64 and 87% respectively within 25 days. Lignocellulolytic activity of the microbial consortium was confirmed by plate and activity assay. These parameters clearly indicated that a mature compost was obtained in 25 days. The 16S rRNA gene amplicon sequencing and functional analysis of predicted genes indicated amino acid and carbohydrate metabolism as the major metabolic pathway during composting. The tertiary level of functional analysis revealed the major metabolic pathways in the bacterial communities as pentose phosphate pathway, glycolysis and tricarboxylic acid cycle.


Assuntos
Compostagem , Microbiota , Oryza , Consórcios Microbianos/genética , Oryza/microbiologia , RNA Ribossômico 16S/genética , Solo/química
2.
Int J Phytoremediation ; 21(6): 519-530, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30666880

RESUMO

The current study demonstrates a comprehensive investigation on clean water generation from raw dairy wastewater (RDW) using a robust microalgal strain, Ascochloris sp. ADW007 and its growth, biomass, and lipid productivities in outdoor conditions. Microalgal treatment studies were conducted in column photobioreactor (CPB) and flat-pate photobioreactor (FPB), where the volumetric algal biomass productivity in RDW was significantly increased in both CPB (0.284 ± 0.0017 g/L/d) and FPB (0.292 ± 0.0121 g/L/d) as compared to synthetic mediums viz., BG11 and TAP, respectively, with enhanced lipid content. Maximum lipid accumulation of 33.40% was obtained within 7 d growth. The volumetric and areal lipid productivities in CPB and FPB were 94 mg/L/d and 5.597 g/m2/d, and 98 mg/L/d and 9.754 g/m2/d, respectively. Chemiflocculation, filtration, and centrifugation techniques were employed for harvesting microalgal biomass. Among the flocculants, 0.08% (w/v) FeCl3 harvested >99% of algal cells within 5 min, while 0.03% (w/v) cetyl trimethyl ammonium bromide and 0.125% (w/v) sodium hydroxide harvested >96% of the cells in 30 and 60 min. After microalgal treatment, >80% of clean and odorless water was obtained with reduction in 94-96% of COD, 72-80% of nitrate and 80-97% of total phosphate, respectively. Highlights Utilization of 100% raw dairy wastewater without any treatment. Production of clean and odorless water for recycle and reuse. COD, nitrate and total phosphate reduction by 94-96%, 72-80%, and 80-97% after treatment. Microalgal treatment studies in simple column and flat-plate photobioreactors. Biomass and lipid production as other value added by-products.


Assuntos
Microalgas , Biodegradação Ambiental , Biomassa , Fotobiorreatores , Águas Residuárias , Água
3.
3 Biotech ; 11(8): 378, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367870

RESUMO

The need for alternative source of fuel has demanded the cultivation of 3rd generation feedstock which includes microalgae, seaweed and cyanobacteria. These phototrophic organisms are unique in a sense that they utilise natural sources like sunlight, water and CO2 for their growth and metabolism thereby producing diverse products that can be processed to produce biofuel, biochemical, nutraceuticals, feed, biofertilizer and other value added products. But due to low biomass productivity and high harvesting cost, microalgae-based production have not received much attention. Therefore, this review provides the state of the art of the microalgae based biorefinery approach to define an economical and sustainable process. The three major segments that need to be considered for economic microalgae biorefinery is low cost nutrient source, efficient harvesting methods and production of by-products with high market value. This review has outlined the use of various wastewater as nutrient source for simultaneous biomass production and bioremediation. Further, it has highlighted the common harvesting methods used for microalgae and also described various products from both raw biomass and delipidified microalgae residues in order to establish a sustainable, economical microalgae biorefinery with a touch of circular bioeconomy. This review has also discussed various challenges to be considered followed by a techno-economic analysis of the microalgae based biorefinery model.

4.
Bioresour Bioprocess ; 4(1): 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28163994

RESUMO

Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa