Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
RNA ; 30(6): 597-608, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38448244

RESUMO

The mammalian mitochondrial proteome comprises over 1000 proteins, with the majority translated from nuclear-encoded messenger RNAs (mRNAs). Mounting evidence suggests many of these mRNAs are localized to the outer mitochondrial membrane (OMM) in a pre- or cotranslational state. Upon reaching the mitochondrial surface, these mRNAs are locally translated to produce proteins that are cotranslationally imported into mitochondria. Here, we summarize various mechanisms cells use to localize RNAs, including transfer RNAs (tRNAs), to the OMM and recent technological advancements in the field to study these processes. While most early studies in the field were carried out in yeast, recent studies reveal RNA localization to the OMM and their regulation in higher organisms. Various factors regulate this localization process, including RNA sequence elements, RNA-binding proteins (RBPs), cytoskeletal motors, and translation machinery. In this review, we also highlight the role of RNA structures and modifications in mitochondrial RNA localization and discuss how these features can alter the binding properties of RNAs. Finally, in addition to RNAs related to mitochondrial function, RNAs involved in other cellular processes can also localize to the OMM, including those implicated in the innate immune response and piRNA biogenesis. As impairment of messenger RNA (mRNA) localization and regulation compromise mitochondrial function, future studies will undoubtedly expand our understanding of how RNAs localize to the OMM and investigate the consequences of their mislocalization in disorders, particularly neurodegenerative diseases, muscular dystrophies, and cancers.


Assuntos
Mitocôndrias , Membranas Mitocondriais , RNA Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/genética , Humanos , Animais , Membranas Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA/metabolismo , RNA/genética , Transporte de RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Biossíntese de Proteínas , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
2.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194705

RESUMO

Epilepsy is one of the most prevalent chronic neurological disorders characterized by frequent unprovoked epileptic seizures. Epileptic seizures can develop from a broad range of underlying abnormalities such as tumours, strokes, infections, traumatic brain injury, developmental abnormalities, autoimmune diseases, and genetic predispositions. Sometimes epilepsy is not easily diagnosed and treated due to the large diversity of symptoms. Undiagnosed and untreated seizures deteriorate over time, impair cognition, lead to injuries, and can sometimes result in death. This review gives details about epilepsy, its classification on the basis of International League Against Epilepsy, current therapeutics which are presently offered for the treatment of epilepsy. Despite of the fact that more than 30 different anti-epileptic medication and antiseizure drugs are available, large number of epileptic patients fail to attain prolonged seizure independence. Poor onsite bioavailability of drugs due to blood brain barrier poses a major challenge in drug delivery to brain. The present review covers the limitations with the state-of-the-art strategies for managing seizures and emphasizes the role of nanotechnology in overcoming these issues. Various nano-carriers like polymeric nanoparticles, dendrimers, lipidic nanoparticles such as solid lipid nanoparticles, nano-lipid carriers, have been explored for the delivery of anti-epileptic drugs to brain using oral and intranasal routes. Nano-carries protect the encapsulated drugs from degradation and provide a platform to deliver controlled release over prolonged periods, improved permeability and bioavailability at the site of action. The review also emphasises in details about the role of neuropeptides for the treatment of epilepsy.


Assuntos
Epilepsia , Humanos , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Anticonvulsivantes/metabolismo , Anticonvulsivantes/uso terapêutico , Encéfalo/metabolismo , Nanotecnologia
3.
Sensors (Basel) ; 24(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204960

RESUMO

Sleep is a vital physiological process for human health, and accurately detecting various sleep states is crucial for diagnosing sleep disorders. This study presents a novel algorithm for identifying sleep stages using EEG signals, which is more efficient and accurate than the state-of-the-art methods. The key innovation lies in employing a piecewise linear data reduction technique called the Halfwave method in the time domain. This method simplifies EEG signals into a piecewise linear form with reduced complexity while preserving sleep stage characteristics. Then, a features vector with six statistical features is built using parameters obtained from the reduced piecewise linear function. We used the MIT-BIH Polysomnographic Database to test our proposed method, which includes more than 80 h of long data from different biomedical signals with six main sleep classes. We used different classifiers and found that the K-Nearest Neighbor classifier performs better in our proposed method. According to experimental findings, the average sensitivity, specificity, and accuracy of the proposed algorithm on the Polysomnographic Database considering eight records is estimated as 94.82%, 96.65%, and 95.73%, respectively. Furthermore, the algorithm shows promise in its computational efficiency, making it suitable for real-time applications such as sleep monitoring devices. Its robust performance across various sleep classes suggests its potential for widespread clinical adoption, making significant advances in the knowledge, detection, and management of sleep problems.


Assuntos
Algoritmos , Eletroencefalografia , Polissonografia , Processamento de Sinais Assistido por Computador , Fases do Sono , Transtornos do Sono-Vigília , Humanos , Eletroencefalografia/métodos , Fases do Sono/fisiologia , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/fisiopatologia , Polissonografia/métodos , Feminino , Masculino , Adulto , Bases de Dados Factuais
4.
Prep Biochem Biotechnol ; : 1-33, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39427252

RESUMO

In recent years, driven by increasing consumer demand for natural and healthy convenient foods, the food industry has been shifting from synthetic to natural products. This shift is also reflected in the growing popularity of non-conventional extraction methods for pigments, which are favored for sustainability and environment-friendliness compared to conventional processes. This review aims to investigate the extraction of carotenoids from a variety of natural sources, including marine sources like fungus, microalgae, and crustaceans, as well as widely studied plants like tomatoes and carrots. Additionally, it delves into the recovery of valuable carotenoids from waste products like pomace and peels, highlighting the nutritional and environmental benefits. The review also emphasizes the role of green solvents such limonene, vegetable oils, ionic liquids, supercritical fluids, and natural deep eutectic solvents in effective and ecologically friendly carotenoid extraction. These technologies support the ideas of a circular and sustainable economy in addition to having a smaller negative impact on the environment. Overall, the present study highlights the crucial importance of green extraction technologies in achieving the dual goals of sustainability and public safety.

5.
Environ Monit Assess ; 196(3): 261, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349609

RESUMO

Considering enormous growth in population, technical advancement, and added reliance on electronic devices leading to adverse health effects, in situ simulations were made to evaluate effects of non-ionizing radiations emitted from three cell phone towers (T1, T2, and T3) of frequency bands (800, 1800, 2300 MHz), (900, 1800, 2300 MHz), and (1800 MHz), respectively. Five sites (S1-S5) were selected near cell phone towers exhibiting different power densities. The site with zero power density was considered as control. Effects of radiations were studied on morphology; protein content; antioxidant enzymes like ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione-S-transferase (GST), guaiacol peroxidase (POD), and glutathione reductase (GR); and genotoxicity using Allium cepa. Mean power density (µW/cm2) was recorded as 1.05, 1.18, 1.6, 2.73, and 12.9 for sites 1, 2, 3, 4, and 5, respectively. A significant change in morphology, root length, fresh weight, and dry weight in Allium cepa was observed under the exposure at different sites. Protein content of roots showed significant difference for samples at all sites while bulbs at sites S4 and S5 when compared to control. Antioxidant activity for root in terms of APX, GST, and POD showed significant changes at S4 and S5 and GR at site S5 and SOD at S1, S2, S3, S4, and S5. Similarly, bulbs showed significant changes at sites S4 and S5 for APX while at sites S3, S4, and S5 for POD and S2, S3, S4, and S5 for SOD and S5 for GR and GST. Genotoxicity study has shown induction of abnormalities at different stages of the cell cycle in Allium cepa root tips. The samples under exposure to radiation with maximum power density have shown maximum induction of oxidative stress and genotoxicity.


Assuntos
Telefone Celular , Cebolas , Monitoramento Ambiental , Glutationa Redutase , Antioxidantes , Glutationa Transferase , Superóxido Dismutase , Radiação não Ionizante
6.
Biotechnol Bioeng ; 120(12): 3529-3542, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37749905

RESUMO

In recent times, it has been realized that novel vaccines are required to combat emerging disease outbreaks, and faster optimization is required to respond to global vaccine demands. Although, fed-batch operations offer better productivity, experiment-based optimization of a new fed-batch process remains expensive and time-consuming. In this context, we propose a novel computational framework that can be used for process optimization and control of a fed-batch baculovirus-insect cell system. Since the baculovirus expression vector system (BEVS) is known to be widely used platforms for recombinant protein/vaccine production, we chose this system to demonstrate the identification of optimal profile. Toward this, first, we constructed a mathematical model that captures the time course of cell and virus growth in a baculovirus-insect cell system. Second, the proposed model was used for numerical analysis to determine the optimal operating profiles of control variables such as culture media, cell density, and oxygen based on a multiobjective optimal control formulation. Third, a detailed comparison between batch and fed-batch culture was perfromed along with a comparison between various alternatives of fed-batch operation. Finally, we demonstrate that a model-based quantification of controlled feed addition in fed-batch culture is capable of providing better productivity as compared to a batch culture. The proposed framework can be utilized for the estimation of optimal operating regions of different control variables to achieve maximum infected cell density and virus yield while minimizing the substrate/media, uninfected cell, and oxygen consumption.


Assuntos
Baculoviridae , Vacinas , Animais , Baculoviridae/genética , Meios de Cultura , Oxigênio , Insetos , Contagem de Células , Reatores Biológicos
7.
Biotechnol Bioeng ; 120(6): 1640-1656, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810760

RESUMO

Coronavirus disease 2019 is known to be regulated by multiple factors such as delayed immune response, impaired T cell activation, and elevated levels of proinflammatory cytokines. Clinical management of the disease remains challenging due to interplay of various factors as drug candidates may elicit different responses depending on the staging of the disease. In this context, we propose a computational framework which provides insights into the interaction between viral infection and immune response in lung epithelial cells, with an aim of predicting optimal treatment strategies based on infection severity. First, we formulate the model for visualizing the nonlinear dynamics during the disease progression considering the role of T cells, macrophages and proinflammatory cytokines. Here, we show that the model is capable of emulating the dynamic and static data trends of viral load, T cell, macrophage levels, interleukin (IL)-6 and TNF-α levels. Second, we demonstrate the ability of the framework to capture the dynamics corresponding to mild, moderate, severe, and critical condition. Our result shows that, at late phase (>15 days), severity of disease is directly proportional to pro-inflammatory cytokine IL6 and tumor necrosis factor (TNF)-α levels and inversely proportional to the number of T cells. Finally, the simulation framework was used to assess the effect of drug administration time as well as efficacy of single or multiple drugs on patients. The major contribution of the proposed framework is to utilize the infection progression model for clinical management and administration of drugs inhibiting virus replication and cytokine levels as well as immunosuppressant drugs at various stages of the disease.


Assuntos
COVID-19 , Humanos , Citocinas , Interleucina-6 , Fator de Necrose Tumoral alfa , Macrófagos
8.
Genomics ; 114(3): 110372, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460817

RESUMO

Modifications in RNA can influence their structure, function, and stability and play essential roles in gene expression and regulation. Methods to detect RNA modifications rely on biophysical techniques such as chromatography or mass spectrometry, which are low throughput, or on high throughput short-read sequencing techniques based on selectively reactive chemical probes. Recent studies have utilized nanopore-based fourth-generation sequencing methods to detect modifications by directly sequencing RNA in its native state. However, these approaches are based on modification-associated mismatch errors that are liable to be confounded by SNPs. Also, there is a need to generate matched knockout controls for reference, which is laborious. In this work, we introduce an internal comparison strategy termed "IndoC," where features such as 'trace' and 'current signal intensity' of potentially modified sites are compared to similar sequence contexts on the same RNA molecule within the sample, alleviating the need for matched knockout controls. We first show that in an IVT model, 'trace' is able to distinguish between artificially generated SNPs and true pseudouridine (Ψ) modifications, both of which display highly similar mismatch profiles. We then apply IndoC on yeast and human ribosomal RNA to demonstrate that previously reported Ψ sites show marked changes in their trace and signal intensity profiles compared with their unmodified counterparts in the same dataset. Finally, we perform direct RNA sequencing of RNA containing Ψ intact with a chemical probe adduct (N-cyclohexyl-N'-ß-(4-methylmorpholinium) ethylcarbodiimide [CMC]) and show that CMC reactivity also induces changes in trace and signal intensity distributions in a Ψ specific manner, allowing their separation from high mismatch sites that display SNP-like behavior.


Assuntos
Nanoporos , RNA , Humanos , RNA/metabolismo , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Informática , Sequenciamento de Nucleotídeos em Larga Escala
9.
J Microencapsul ; 40(7): 534-548, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530105

RESUMO

AIM: Present study focuses on the development of P80 coated PLGA Nanoparticles loaded with drugs, paroxetine (P80-Par-PLGA-NPs) and clonidine (P80-CLD-PLGA-NPs) for in-vitro evaluation of Cellular Uptake & Cytotoxicity on Neuro-2a cells. METHOD: P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs were developed and characterised for zeta size, potential, PDI, EE%, DL%, TEM, SEM, FTIR, DSC, in-vitro release, cytotoxicity, histopathological and cell uptake studies using rhodamine loaded P80-NPs. RESULT: Mean particle diameter of P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs was 204; 182.7 nm, ZP of -21.8; -18.72 mV and 0.275; 0.341 PDI, respectively. TEM and SEM images revealed homogenous surface morphology. In-vitro drug release showed sustained and complete release in 72 h. Cell viability (>90%) at Cmax and no cytotoxicity in histopathology was observed. Significant higher uptake (96.9%) of P80-modified-NPS was observed as compared to unmodified-NPs (81%) (p < 0.05). CONCLUSION: The finding clearly indicated a higher cell uptake of drugs via surface modified P80-coated PLGA-NPs as compared to unmodified particles.

10.
J Environ Manage ; 345: 118872, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683384

RESUMO

The health of agroecosystems is subsiding unremittingly, and the over-use of chemical fertilizers is one of the key reasons. It is hypothesized that integrating biochar, a carbon (C)-rich product, would be an effective approach to reducing the uses of synthetic fertilizers and securing crop productivity through improving soil properties and nutrient cycling. The bamboo biochar at different quantities (4-12 Mg ha-1) and combinations with chemical fertilizers were tested in stevia (Stevia rebaudiana) farming in silty clay acidic soil. The integration of biochar at 8 Mg ha-1 with 100% nitrogen (N), phosphorus (P), and potassium (K) produced statistically (p ≤ 0.05) higher leaf area index, dry leaf yield, and steviol glycosides yield by about 18.0-33.0, 25.8-44.9, and 20.5-59.4%, respectively, compared with the 100% NPK via improving soil physicochemical properties. Soil bulk density was reduced by 5-8% with biochar at ≥ 8 Mg ha-1, indicating the soil porosity was increased by altering the soil macrostructure. The soil pH was significantly (p ≤ 0.05) augmented with the addition of biochar alone or in the combination of N because of the alkaline nature of the used biochar (pH = 9.65). Furthermore, integrating biochar at 8 Mg ha-1 with 100% NPK increased 22.7% soil organic C compared with the sole 100% NPK. The priming effect of applied N activates soil microorganisms to mineralize the stable C. Our results satisfy the hypothesis that adding bamboo biochar would be a novel strategy for sustaining productivity by altering soil physicochemical properties.


Assuntos
Sasa , Stevia , Carvão Vegetal , Carbono , Solo , Sequestro de Carbono , Fertilizantes , Nitrogênio , Nutrientes
11.
Crit Rev Biochem Mol Biol ; 54(2): 85-102, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31106589

RESUMO

All proteins end with a carboxyl terminus that has unique biophysical properties and is often disordered. Although there are examples of important C-termini functions, a more global role for the C-terminus is not yet established. In this review, we summarize research on C-termini, a unique region in proteins that cells exploit. Alternative splicing and proteolysis increase the diversity of proteins and peptides in cells with unique C-termini. The C-termini of proteins contain minimotifs, short peptides with an encoded function generally characterized as binding, posttranslational modifications, and trafficking. Many of these activities are specific to minimotifs on the C-terminus. Approximately 13% of C-termini in the human proteome have a known minimotif, and the majority, if not all of the remaining termini have conserved motifs inferring a function that remains to be discovered. C-termini, their predictions, and their functions are collated in the C-terminome, Proteus, and Terminus Oriented Protein Function INferred Database (TopFIND) database/web systems. Many C-termini are well conserved, and some have a known role in health and disease. We envision that this summary of C-termini will guide future investigation of their biochemical and physiological significance.


Assuntos
Proteínas/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Bases de Dados de Proteínas , Humanos , Conformação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas/química
12.
Nanotechnology ; 32(33)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33721857

RESUMO

Bismuth sulfide (Bi2S3) is a promising material for thermoelectric applications owing to its non-toxicity and high abundance of bismuth (Bi) and sulfur (S) elements on earth. However, its low electrical conductivity drastically reduces the value of the figure of merit (ZT). In this work, we have synthesized three-dimensional (3D) hierarchical Bi2S3nanoflowers (NFs) by the hydrothermal route and further incorporated them with conducting polymer polyaniline (PANI) by simple chemisorption method. We have investigated the thermoelectric properties of the as-prepared Bi2S3NFs and PANI/Bi2S3nanocomposite samples and it is demonstrated that the incorporation of the PANI matrix with the 3D hierarchical Bi2S3NFs provides a conducting substrate for the easy transport of the electrons and reduces the barrier height at the interface, resulting in ∼62% increment in the electrical conductivity as compared to Bi2S3NFs. Moreover, a decrement in the thermal conductivity of the PANI/Bi2S3nanocomposite is observed as compared to pristine Bi2S3NFs due to the increased phonon scattering at the interfaces facilitated by the hierarchical morphology of the NFs. Furthermore, an increment in the electrical conductivity and simultaneous decrement in the thermal conductivity results in an overall ∼20% increment in the figure of merit (ZT) for PANI/Bi2S3nanocomposite as compared to pristine Bi2S3NFs. The work highlights an effective strategy of coupling 3D hierarchical metal chalcogenide with conducting polymer for optimizing their thermoelectric properties.

13.
Chem Eng J ; 408: 127317, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34017217

RESUMO

Microplastics (MPs) with sizes < 5 mm are found in various compositions, shapes, morphologies, and textures that are the major sources of environmental pollution. The fraction of MPs in total weight of plastic accumulation around the world is predicted to be 13.2% by 2060. These micron-sized MPs are hazardous to marine species, birds, animals, soil creatures and humans due to their occurrence in air, water, soil, indoor dust and food items. The present review covers discussions on the damaging effects of MPs on the environment and their removal techniques including biodegradation, adsorption, catalytic, photocatalytic degradation, coagulation, filtration and electro-coagulation. The main techniques used to analyze the structural and surface changes such as cracks, holes and erosion post the degradation processes are FTIR and SEM analysis. In addition, reduction in plastic molecular weight by the microbes implies disintegration of MPs. Adsorptive removal by the magnetic adsorbent promises complete elimination while the biodegradable catalysts could remove 70-100% of MPs. Catalytic degradation via advanced oxidation assisted by S O 4 • - or O H • radicals generated by peroxymonosulfate or sodium sulfate are also adequately covered in addition to photocatalysis. The chemical methods such as sol-gel, agglomeration, and coagulation in conjunction with other physical methods are discussed concerning the drinking water/wastewater/sludge treatments. The efficacy, merits and demerits of the currently used removal approaches are reviewed that will be helpful in developing more sophisticated technologies for the complete mitigation of MPs from the environment.

14.
Nanotechnology ; 31(13): 135402, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31747651

RESUMO

Sodium niobate nanofibers (NaNbO3-NF) have been synthesized using a hydrothermal technique and further coupled with visible light responsive graphitic carbon nitride (g-C3N4) nanosheets in different concentration ratios of 2:1 (2-CN), 4:1 (4-CN) and 8:1 (8-CN). A significant improvement in the photoelectrochemical (PEC) performance of the g-C3N4/NaNbO3-NF (4-CN) nanostructured photoanode compared to the bare NaNbO3 photoanode is observed. A current density of 12.55 mA cm-2 at 1 V with respect to the Ag/AgCl reference electrode is achieved for the g-C3N4/NaNbO3-NF (4-CN) photoanode, which is ∼3 times higher than the NaNbO3-NF photoanode. Also, compared to NaNbO3-NF, the g-C3N4/NaNbO3-NF (4-CN) nanocomposite photoanode showed ∼3 times improvement in the incident photon-to-current conversion efficiency. The improvement in the PEC performance of visible light active g-C3N4/NaNbO3-NF (4-CN) nanocomposite is attributed to the improved photoresponse of NaNbO3-NF due to the coupling of g-C3N4 and the formation of a type-II heterojunction between them leading to the enhanced separation of the photogenerated charge carriers. A possible reaction mechanism for the improved PEC water splitting performance has been proposed for the g-C3N4/NaNbO3-NF (4-CN) photoanode.

15.
Nanotechnology ; 31(46): 465402, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32764193

RESUMO

Hierarchical nanoflowers (NFs) of zinc oxide (ZnO) have been synthesized in the hexagonal wurtzite structure by a facile hydrothermal method. Polyaniline (PANI) has been prepared by the chemical oxidative polymerization method and incorporated with ZnO NFs by the chemisorption method. The potential of the synthesized nanostructures has been demonstrated for efficient photocatalytic degradation of methylene blue (MB) and photoelectrochemical water splitting. The PANI/ZnO nanocomposite has exhibited the enhanced photocatalytic activity which is ∼9 fold higher in comparison to pristine ZnO NFs and enhanced photocurrent density which is ∼16 fold higher than the ZnO photoanode. Importantly, ∼4 fold increment in the incident photon-to-current conversion efficiency (IPCE) is exhibited by PANI/ZnO, than that of ZnO photoanode. The remarkably enhanced photocatalytic and photoelectrochemical performance of PANI/ZnO nanocomposite is attributed to the availability of more interfacial sites facilitated by the hierarchical ZnO NFs, improved overall photoresponse due to its photosensitization with PANI and the resulting type-II heterojunction between them, which helps in the efficient separation of photogenerated charge carriers at the interface. A plausible reaction mechanism for the substantially improved performance of nanostructured PANI/ZnO towards MB degradation and water splitting has also been elucidated.

16.
Curr Genomics ; 21(8): 610-623, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33414682

RESUMO

INTRODUCTION: The microalga Parachlorella kessleri-I produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector. METHODS: In this study, the complete chloroplast genome sequence (cpDNA) of P. kessleri-I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (aadA) gene and Sh-ble gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR. RESULTS: The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of P. kessleri-I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L-1 spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, via homologous recombination. The chloroplast genome copy number in wildtype and transgenic P. kessleri-I was determined using Droplet Digital PCR. CONCLUSION: The optimization of stable chloroplast transformation in marine alga P. kessleri-I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO2, improving the photosynthetic efficiency and reducing the overall biofuels production cost.

17.
J Environ Manage ; 273: 111096, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734892

RESUMO

Environmental sustainability criteria and rising energy demands, exhaustion of conventional resources of energy followed by environmental degradation due to abrupt climate changes have shifted the attention of scientists to seek renewable sources of green and clean energy for sustainable development. Bioenergy is an excellent alternative since it can be applied for several energy-requirements after utilizing suitable conversion methodology. This review elucidates all aspects of biofuels (bioethanol, biodiesel, and butanol) and their sustainability criteria. The principal focus is on the latest developments in biofuel production chiefly stressing on the role of nanotechnology. A plethora of investigations regarding the emerging techniques for process improvement like integration methods, less energy-intensive distillation techniques, and bioengineering of microorganisms are discussed. This can assist in making biofuel-production in a real-world market more economically and environmentally viable.


Assuntos
Biocombustíveis , Microalgas , Bioengenharia , Biotecnologia , Conservação dos Recursos Naturais
18.
J Exp Biol ; 222(Pt 1)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30446534

RESUMO

High fecundity, transparent embryos for monitoring the rapid development of organs and the availability of a well-annotated genome has made zebrafish a model organism of choice for developmental biology and neurobiology. This vertebrate model, which is also a favourite in chronobiology studies, shows striking circadian rhythmicity in behaviour. Here, we identify novel genes in the zebrafish genome that are expressed in the zebrafish retina. We further resolve the expression pattern over time and tentatively assign specific novel transcripts to retinal bipolar cells of the inner nuclear layer. Using chemical ablation and free run experiments, we segregate the transcripts that are rhythmic when entrained by light from those that show sustained oscillations in the absence of external cues. The transcripts reported here with rigorous annotation and specific functions in circadian biology provide the groundwork for functional characterization of novel players in the zebrafish retinal clock.


Assuntos
Ritmo Circadiano/fisiologia , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Retina/fisiologia , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
Bioorg Med Chem Lett ; 24(1): 77-82, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24332492

RESUMO

Six molecules were obtained by the combination of three biologically and medicinally significant moieties-indole, chrysin and pyrazole. Bio-evaluation of these hybrid molecules showed significant inhibition of COX-2 enzymatic activity over that of COX-1 and appreciable anti-nociceptive activity, checked at swiss albino mice.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
20.
Int J Artif Organs ; 47(3): 212-216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38384184

RESUMO

This case study delineates the proficient creation of a silicone finger prosthesis, tailored for a patient contending with partial digit amputation. The prosthesis was devised with the overarching goal of reinstating not only the physiological dexterity of the hand but also its aesthetic integrity and the patient's psychological equilibrium. The crafting process entailed a meticulous technique to replicate the intricate texture of the skin in order to guarantee a near normal appearance. Post-prosthesis integration, the patient exhibited enhancements in manual functionality and articulated a heightened self-assuredness because of the indiscernible prosthesis. This illustrative case underscores the efficacy of silicone finger prosthetics in conferring both functional and aesthetic restitution to those afflicted with partial digit amputations.


Assuntos
Dedos , Mãos , Humanos , Desenho de Prótese , Silicones , Estética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa