RESUMO
The critical oxygen partial pressure (Pcrit), typically defined as the PO2 below which an animal's metabolic rate (MR) is unsustainable, is widely interpreted as a measure of hypoxia tolerance. Here, Pcrit is defined as the PO2 at which physiological oxygen supply (α0) reaches its maximum capacity (α; µmol O2 g-1 h-1 kPa-1). α is a species- and temperature-specific constant describing the oxygen dependency of the maximum metabolic rate (MMR=PO2×α) or, equivalently, the MR dependence of Pcrit (Pcrit=MR/α). We describe the α-method, in which the MR is monitored as oxygen declines and, for each measurement period, is divided by the corresponding PO2 to provide the concurrent oxygen supply (α0=MR/PO2). The highest α0 value (or, more conservatively, the mean of the three highest values) is designated as α. The same value of α is reached at Pcrit for any MR regardless of previous or subsequent metabolic activity. The MR need not be constant (regulated), standardized or exhibit a clear breakpoint at Pcrit for accurate determination of α. The α-method has several advantages over Pcrit determination and non-linear analyses, including: (1) less ambiguity and greater accuracy, (2) fewer constraints in respirometry methodology and analysis, and (3) greater predictive power and ecological and physiological insight. Across the species evaluated here, α values are correlated with MR, but not Pcrit. Rather than an index of hypoxia tolerance, Pcrit is a reflection of α, which evolves to support maximum energy demands and aerobic scope at the prevailing temperature and oxygen level.
Assuntos
Hipóxia , Oxigênio , Animais , Consumo de Oxigênio , Pressão Parcial , TemperaturaRESUMO
A warm anomaly in the upper ocean, colloquially named "the Blob," appeared in the Gulf of Alaska during the calm winter of 2013-2014, spread across the northern North Pacific (NP) Ocean, and shifted eastward and onto the Oregon shelf. At least 14 species of copepods occurred which had never been observed in shelf/slope waters off Oregon, some of which are known to have NP Gyre affinities, indicating that the source waters of the coastal "Blob" were likely of both offshore (from the west) and subtropical/tropical origin. The anomalously warm conditions were reduced during strong upwelling in spring 2015 but returned when upwelling weakened in July 2015 and transitioned to downwelling in fall 2015. The extended period of warm conditions resulted in prolonged effects on the ecosystem off central Oregon, lasting at least through 2016. Impacts to the lower trophic levels were unprecedented and include a novel plankton community composition resulting from increased copepod, diatom, and dinoflagellate species richness and increased abundance of dinoflagellates. Additionally, the multiyear warm anomalies were associated with reduced biomass of copepods and euphausiids, high abundance of larvaceans and doliolids (indictors of oligotrophic ocean conditions), and a toxic diatom bloom (Pseudo-nitzschia) throughout the California Current in 2015, thereby changing the composition of the food web that is relied upon by many commercially and ecologically important species.