Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 377(3): 407-416, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795395

RESUMO

GPR6 is an orphan G-protein-coupled receptor that has enriched expression in the striatopallidal, indirect pathway and medium spiny neurons of the striatum. This pathway is greatly impacted by the loss of the nigro-striatal dopaminergic neurons in Parkinson disease, and modulating this neurocircuitry can be therapeutically beneficial. In this study, we describe the in vitro and in vivo pharmacological characterization of (R)-1-(2-(4-(2,4-difluorophenoxy)piperidin-1-yl)-3-((tetrahydrofuran-3-yl)amino)-7,8-dihydropyrido[3,4-b]pyrazin-6(5H)-yl)ethan-1-one (CVN424), a highly potent and selective small-molecule inverse agonist for GPR6 that is currently undergoing clinical evaluation. CVN424 is brain-penetrant and shows dose-dependent receptor occupancy that attained brain 50% of receptor occupancy at plasma concentrations of 6.0 and 7.4 ng/ml in mice and rats, respectively. Oral administration of CVN424 dose-dependently increases locomotor activity and reverses haloperidol-induced catalepsy. Furthermore, CVN424 restored mobility in bilateral 6-hydroxydopamine lesion model of Parkinson disease. The presence and localization of GPR6 in medium spiny neurons of striatum postmortem samples from both nondemented control and patients with Parkinson disease were confirmed at the level of both RNA (using Nuclear Enriched Transcript Sort sequencing) and protein. This body of work demonstrates that CVN424 is a potent, orally active, and brain-penetrant GPR6 inverse agonist that is effective in preclinical models and is a potential therapeutic for improving motor function in patients with Parkinson disease. SIGNIFICANCE STATEMENT: CVN424 represents a nondopaminergic novel drug for potential use in patients with Parkinson disease.


Assuntos
Corpo Estriado , Animais , Hormônios Esteroides Gonadais , Ratos
2.
Blood ; 119(7): 1747-56, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22186994

RESUMO

The C-type lectin receptor CLEC-2 signals through a pathway that is critically dependent on the tyrosine kinase Syk. We show that homozygous loss of either protein results in defects in brain vascular and lymphatic development, lung inflation, and perinatal lethality. Furthermore, we find that conditional deletion of Syk in the hematopoietic lineage, or conditional deletion of CLEC-2 or Syk in the megakaryocyte/platelet lineage, also causes defects in brain vascular and lymphatic development, although the mice are viable. In contrast, conditional deletion of Syk in other hematopoietic lineages had no effect on viability or brain vasculature and lymphatic development. We show that platelets, but not platelet releasate, modulate the migration and intercellular adhesion of lymphatic endothelial cells through a pathway that depends on CLEC-2 and Syk. These studies found that megakaryocyte/platelet expression of CLEC-2 and Syk is required for normal brain vasculature and lymphatic development and that platelet CLEC-2 and Syk directly modulate lymphatic endothelial cell behavior in vitro.


Assuntos
Plaquetas/metabolismo , Linhagem da Célula/genética , Crescimento e Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lectinas Tipo C/fisiologia , Megacariócitos/metabolismo , Proteínas Tirosina Quinases/fisiologia , Animais , Animais Recém-Nascidos , Plaquetas/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Crescimento e Desenvolvimento/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Megacariócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinase Syk , Trombopoese/genética , Trombopoese/fisiologia
3.
Neuropharmacology ; 224: 109330, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375694

RESUMO

Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1ß, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1ß from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.


Assuntos
Doença de Alzheimer , Inflamassomos , Canais de Potássio de Domínios Poros em Tandem , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Inflamassomos/metabolismo , Microglia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
4.
Genetica ; 122(1): 47-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15619960

RESUMO

With the completion of the first draft of the human genome sequence, the next major challenge is assigning function to genes. One approach is genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes of interest and subsequent mapping and identification of the mutated genes in question. We (a consortium made up of GlaxoSmithKline, the MRC Mammalian Genetics Unit and Mouse Genome Centre, Harwell, Imperial College, London, and the Royal London Hospital) have used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for use as animal models of human disease and for gene function assignment (Nolan et al., 2000). As of 2003, 35,000 mice have been produced to date in a genome-wide screen for dominant mutations and screened using a variety of screening protocols. Nearly 200 mutants have been confirmed as heritable and added to the mouse mutant catalogue and, overall, we can extrapolate that we have recovered over 700 mutants from the screening programme. For further information on the project and details of the data, see http://www.mgu.har.mrc.ac.uk/mutabase.


Assuntos
Mapeamento Cromossômico , Modelos Animais de Doenças , Genoma , Camundongos/genética , Animais , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa