Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Exp Neurol ; 320: 112975, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181199

RESUMO

Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. This effect is hypothesized to be mediated by VNS-dependent engagement of neuromodulatory networks. VNS influences activity in the locus coeruleus (LC) and dorsal raphe nucleus (DRN), but the involvement of these neuromodulatory networks in VNS-directed plasticity is unknown. We tested the hypothesis that cortical norepinephrine and serotonin are required for VNS-dependent enhancement of motor cortex plasticity. Rats were trained on a lever pressing task emphasizing proximal forelimb use. Once proficient, all rats received a surgically implanted vagus nerve cuff and cortical injections of either immunotoxins to deplete serotonin or norepinephrine, or vehicle control. Following surgical recovery, rats received half second bursts of 0.8 mA or sham VNS after successful trials. After five days of pairing intracortical microstimulation (ICMS) was performed in the motor cortex contralateral to the trained limb. VNS paired with training more than doubled cortical representations of proximal forelimb movements. Depletion of either cortical norepinephrine or serotonin prevented this effect. The requirement of multiple neuromodulators is consistent with earlier studies showing that these neuromodulators regulate synaptic plasticity in a complimentary fashion.


Assuntos
Córtex Motor/fisiologia , Plasticidade Neuronal/fisiologia , Norepinefrina/metabolismo , Serotonina/metabolismo , Estimulação do Nervo Vago , Animais , Feminino , Movimento/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa