RESUMO
Liver cancer is the sixth most prevalent cancer and ranks third in cancer-related death, after lung and colorectal cancer. Various natural products have been discovered as alternatives to conventional cancer therapy strategies, including radiotherapy, chemotherapy, and surgery. Curcumin (CUR) with antiinflammatory, antioxidant, and antitumor activities has been associated with therapeutic benefits against various cancers. It can regulate multiple signaling pathways, such as PI3K/Akt, Wnt/ß-catenin, JAK/STAT, p53, MAPKs, and NF-ĸB, which are involved in cancer cell proliferation, metastasis, apoptosis, angiogenesis, and autophagy. Due to its rapid metabolism, poor oral bioavailability, and low solubility in water, CUR application in clinical practices is restricted. To overcome these limitations, nanotechnology-based delivery systems have been applied to use CUR nanoformulations with added benefits, such as reducing toxicity, improving cellular uptake, and targeting tumor sites. Besides the anticancer activities of CUR in combating various cancers, especially liver cancer, here we focused on the CUR nanoformulations, such as micelles, liposomes, polymeric, metal, and solid lipid nanoparticles, and others, in the treatment of liver cancer.
Assuntos
Curcumina , Neoplasias Hepáticas , Humanos , Curcumina/farmacologia , Fosfatidilinositol 3-Quinases , Micelas , Transdução de SinaisRESUMO
Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.
RESUMO
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.
Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doença de Parkinson/terapia , NeurogêneseRESUMO
Mycotoxin pollution in agricultural food products endangers animal and human health during the supply chains, therefore the development of accurate and rapid techniques for the determination of mycotoxins is of great importance for food safety guarantee. MXenes-based nanoprobes have attracted enormous attention as a complementary analysis and promising alternative strategies to conventional diagnostic methods, because of their fascinating features, like high electrical conductivity, various surface functional groups, high surface area, superb thermal resistance, good hydrophilicity, and environmentally-friendlier characteristics. In this study, we outline the state-of-the-art research on MXenes-based probes in detecting various mycotoxins like aflatoxin, ochratoxin, deoxynivalenol, zearalenone, and other toxins as a most commonly founded mycotoxin in the agri-food supply chain. First, we present the diverse synthesis approaches and exceptional characteristics of MXenes. Afterward, based on the detecting mechanism, we divide the biosensing utilizations of MXenes into two subcategories: electrochemical, and optical biosensors. Then their performance in effective sensing of mycotoxins is comprehensively deliberated. Finally, present challenges and prospective opportunities for MXenes are debated.