Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 341(1): 5-19, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19751720

RESUMO

Biologists have long recognized that dramatic bending of a cell sheet may be driven by even modest shrinking of the apical sides of cells. Cell shape changes and tissue movements like these are at the core of many of the morphogenetic movements that shape animal form during development, driving processes such as gastrulation, tube formation, and neurulation. The mechanisms of such cell shape changes must integrate developmental patterning information in order to spatially and temporally control force production-issues that touch on fundamental aspects of both cell and developmental biology and on birth defects research. How does developmental patterning regulate force-producing mechanisms, and what roles do such mechanisms play in development? Work on apical constriction from multiple systems including Drosophila, Caenorhabditis elegans, sea urchin, Xenopus, chick, and mouse has begun to illuminate these issues. Here, we review this effort to explore the diversity of mechanisms of apical constriction, the diversity of roles that apical constriction plays in development, and the common themes that emerge from comparing systems.


Assuntos
Forma Celular , Morfogênese , Animais , Polaridade Celular
2.
Dev Cell ; 11(4): 471-81, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17011487

RESUMO

During cell-cell fusion, two cells' plasma membranes merge, allowing the cytoplasms to mix and form a syncytium. Little is known about the mechanisms of cell fusion. Here, we asked whether eff-1, shown previously to be essential for fusion in Caenorhabditis elegans, acts directly in the fusion machinery. We show that expression of EFF-1 transmembrane protein drives fusion of heterologous cells into multinucleate syncytia. We obtained evidence that EFF-1-mediated fusion involves a hemifusion intermediate characterized by membrane mixing without cytoplasm mixing. Furthermore, syncytiogenesis requires EFF-1 in both fusing cells. To test whether this mechanism also applies in vivo, we conducted genetic mosaic analysis of C. elegans and found that homotypic epidermal fusion requires EFF-1 in both cells. Thus, although EFF-1-mediated fusion shares characteristics with viral and intracellular fusion, including an apparent hemifusion step, it differs from these reactions in the homotypic organization of the fusion machinery.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Membrana Celular/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fusão Celular , Membrana Celular/metabolismo , Células Cultivadas , Embrião não Mamífero , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Cinética , Glicoproteínas de Membrana/genética , Modelos Biológicos , Mosaicismo , Spodoptera/citologia , Fatores de Tempo , Transfecção , Transgenes
3.
Dev Cell ; 2(3): 355-62, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11879640

RESUMO

Multinucleate cells are widespread in nature, yet the mechanism by which cells fuse their plasma membranes is poorly understood. To identify animal fusogens, we performed new screens for mutations that abolish cell fusion within tissues of C. elegans throughout development. We identified the gene eff-1, which is expressed as cells acquire fusion competence and encodes a novel integral membrane protein. EFF-1 sequence motifs suggest physicochemical actions that could cause adjacent bilayers to fuse. Mutations in the extracellular domain of EFF-1 completely block epithelial cell membrane fusion without affecting other perfusion events such as cell generation, patterning, differentiation, and adhesion. Thus, EFF-1 is a key component in the mechanism of cell fusion, a process essential to normal animal development.


Assuntos
Caenorhabditis elegans/fisiologia , Fusão Celular , Proteínas de Helminto/metabolismo , Fusão de Membrana/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Células Epiteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Helminto/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/fisiologia , Fenótipo , Vulva/citologia , Vulva/crescimento & desenvolvimento
4.
Curr Biol ; 14(17): 1587-91, 2004 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-15341747

RESUMO

Despite the identification of essential processes in which cell fusion plays spectacular roles such as in fertilization and development of muscle, bone, and placenta, there are no identified proteins that directly mediate developmental cell fusion reactions. C. elegans has recently become among the best-characterized models to use for studying developmental cell fusion. The eff-1 (epithelial fusion failure) gene encodes novel type I membrane proteins required for epithelial cell fusion. Analysis of eff-1 mutants showed that cell fusion normally restricts routes for cell migration and establishes body and organ shape and size [ 5, 8, 9, 11]. Here, we explored cell fusion by using time-lapse confocal and electron microscopy of different organs. We found that ectopic expression of eff-1 is sufficient to fuse epithelial cells that do not normally fuse. This ectopic fusion results in cytoplasmic content mixing and disappearance of apical junctions, starting less than 50 min after the start of eff-1 transcription. We found that eff-1 is necessary to initiate and expand multiple microfusion events between pharyngeal muscle cells. Surprisingly, eff-1 is not required to fuse the gonadal anchor cell to uterine cells. Thus, eff-1 is sufficient and essential for most but not all cell fusion events during C. elegans development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Fusão Celular , Epitélio/metabolismo , Epitélio/ultraestrutura , Fluorescência , Microscopia Confocal , Microscopia Eletrônica , Células Musculares/metabolismo , Células Musculares/ultraestrutura
5.
Science ; 335(6073): 1232-5, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22323741

RESUMO

Apical constriction changes cell shapes, driving critical morphogenetic events, including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both Caenorhabitis elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without substantial shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension, but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex.


Assuntos
Actomiosina/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Forma Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Gastrulação , Actomiosina/química , Animais , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Simulação por Computador , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Junções Intercelulares/fisiologia , Junções Intercelulares/ultraestrutura , Fenômenos Mecânicos , Modelos Biológicos , Morfogênese , Miosinas/química , Miosinas/fisiologia
6.
Genetics ; 188(3): 549-64, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21527776

RESUMO

Morphogenesis is an important component of animal development. Genetic redundancy has been proposed to be common among morphogenesis genes, posing a challenge to the genetic dissection of morphogenesis mechanisms. Genetic redundancy is more generally a challenge in biology, as large proportions of the genes in diverse organisms have no apparent loss of function phenotypes. Here, we present a screen designed to uncover redundant and partially redundant genes that function in an example of morphogenesis, gastrulation in Caenorhabditis elegans. We performed an RNA interference (RNAi) enhancer screen in a gastrulation-sensitized double-mutant background, targeting genes likely to be expressed in gastrulating cells or their neighbors. Secondary screening identified 16 new genes whose functions contribute to normal gastrulation in a nonsensitized background. We observed that for most new genes found, the closest known homologs were multiple other C. elegans genes, suggesting that some may have derived from rounds of recent gene duplication events. We predict that such genes are more likely than single copy genes to comprise redundant or partially redundant gene families. We explored this prediction for one gene that we identified and confirmed that this gene and five close relatives, which encode predicted substrate recognition subunits (SRSs) for a CUL-2 ubiquitin ligase, do indeed function partially redundantly with each other in gastrulation. Our results implicate new genes in C. elegans gastrulation, and they show that an RNAi-based enhancer screen in C. elegans can be used as an efficient means to identify important but redundant or partially redundant developmental genes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma Helmíntico , Ensaios de Triagem em Larga Escala , Interferência de RNA , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Duplicação Gênica , Genes de Helmintos , Estudos de Associação Genética , Microscopia Confocal , Família Multigênica , Mutação , Fenótipo , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
7.
Science ; 328(5983): 1285-8, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20448153

RESUMO

The mechanisms controlling the formation and maintenance of neuronal trees are poorly understood. We examined the dynamic development of two arborized mechanoreceptor neurons (PVDs) required for reception of strong mechanical stimuli in Caenorhabditis elegans. The PVDs elaborated dendritic trees comprising structural units we call "menorahs." We studied how the number, structure, and function of menorahs were maintained. EFF-1, an essential protein mediating cell fusion, acted autonomously in the PVDs to trim developing menorahs. eff-1 mutants displayed hyperbranched, disorganized menorahs. Overexpression of EFF-1 in the PVD reduced branching. Neuronal pruning appeared to involve EFF-1-dependent branch retraction and neurite-neurite autofusion. Thus, EFF-1 activities may act as a quality control mechanism during the sculpting of dendritic trees.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , Dendritos/ultraestrutura , Mecanorreceptores/metabolismo , Mecanorreceptores/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Neuritos/ultraestrutura , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Dendritos/metabolismo , Dendritos/fisiologia , Imageamento Tridimensional , Glicoproteínas de Membrana/genética , Microscopia Confocal , Modelos Neurológicos , Proteínas Mutantes/metabolismo , Mutação , Neuritos/fisiologia , Temperatura
8.
Development ; 132(4): 739-49, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659483

RESUMO

engrailed is a homeobox gene essential for developmental functions such as differentiation of cell populations and the onset of compartment boundaries in arthropods and vertebrates. We present the first functional study on engrailed in an unsegmented animal: the nematode Caenorhabditis elegans. In the developing worm embryo, ceh-16/engrailed is predominantly expressed in one bilateral row of epidermal cells (the seam cells). We show that ceh-16/engrailed primes a specification cascade through three mechanisms: (1) it suppresses fusion between seam cells and other epidermal cells by repressing eff-1/fusogen expression; (2) it triggers the differentiation of the seam cells through different factors, including the GATA factor elt-5; and (3) it segregates the seam cells into a distinct lateral cellular compartment, repressing cell migration toward dorsal and ventral compartments.


Assuntos
Padronização Corporal/fisiologia , Caenorhabditis elegans/embriologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Epiderme/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/metabolismo , Epiderme/embriologia , Fatores de Transcrição GATA , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação/genética
9.
Bioessays ; 25(7): 672-82, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12815722

RESUMO

The ability of two or more cells to unite to form a new syncytial cell has been utilized in metazoans throughout evolution to form many complex organs, such as muscles, bones and placentae. This requires migration, recognition and adhesion between cells together with fusion of their plasma membranes and rearrangement of their cytoplasmic contents. Until recently, understanding of the mechanisms of cell fusion was restricted to fusion between enveloped viruses and their target cells. The identification of new factors that take part in developmental cell fusion in C. elegans opens the way to understanding how cells fuse and what the functions of this process are. In this review, we describe current knowledge on the mechanisms and putative roles of developmental cell fusion in C. elegans and how cell fusion is regulated, together with other intercellular processes to promote organogenesis.


Assuntos
Fusão Celular , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Fenômenos Fisiológicos Celulares , Células/virologia , Citoplasma/fisiologia , Modelos Biológicos , Morfogênese
10.
Genes Dev ; 16(24): 3136-41, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12502736

RESUMO

General mechanisms by which Hox genes establish cell fates are known. However, a few Hox effectors mediating cell behaviors have been identified. Here we found the first effector of LIN-39/HoxD4/Dfd in Caenorhabditis elegans. In specific vulval precursor cells (VPCs), LIN-39 represses early and late expression of EFF-1, a membrane protein essential for cell fusion. Repression of eff-1 is also achieved by the activity of CEH-20/Exd/Pbx, a known cofactor of Hox proteins. Unfused VPCs in lin-39(-);eff-1(-) double mutants fail to divide but migrate, executing vulval fates. Thus, lin-39 is essential for inhibition of EFF-1-dependent cell fusion and stimulation of cell proliferation during vulva formation. Supplemental material is available at http://www.genesdev.org.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Proteínas de Homeodomínio/fisiologia , Proteínas de Membrana/fisiologia , Fatores de Transcrição , Vulva/citologia , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Diferenciação Celular , Divisão Celular , Fusão Celular , Indução Embrionária , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Helminto/metabolismo , Homozigoto , Modelos Moleculares , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa