Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Immunol ; 19(4): 342-353, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507355

RESUMO

Pathogens have co-evolved with mosquitoes to optimize transmission to hosts. Mosquito salivary-gland extract is known to modulate host immune responses and facilitate pathogen transmission, but the underlying molecular mechanisms of this have remained unknown. In this study, we identified and characterized a prominent 15-kilodalton protein, LTRIN, obtained from the salivary glands of the mosquito Aedes aegypti. LTRIN expression was upregulated in blood-fed mosquitoes, and LTRIN facilitated the transmission of Zika virus (ZIKV) and exacerbated its pathogenicity by interfering with signaling through the lymphotoxin-ß receptor (LTßR). Mechanically, LTRIN bound to LTßR and 'preferentially' inhibited signaling via the transcription factor NF-κB and the production of inflammatory cytokines by interfering with the dimerization of LTßR during infection with ZIKV. Furthermore, treatment with antibody to LTRIN inhibited mosquito-mediated infection with ZIKV, and abolishing LTßR potentiated the infectivity of ZIKV both in vitro and in vivo. This study provides deeper insight into the transmission of mosquito-borne diseases in nature and supports the therapeutic potential of inhibiting the action of LTRIN to disrupt ZIKV transmission.


Assuntos
Aedes/virologia , Proteínas de Insetos/metabolismo , Saliva/metabolismo , Infecção por Zika virus/transmissão , Zika virus/patogenicidade , Animais , Humanos , Receptor beta de Linfotoxina/imunologia , Receptor beta de Linfotoxina/metabolismo , Camundongos , Mosquitos Vetores/química , Mosquitos Vetores/imunologia , Mosquitos Vetores/metabolismo , Saliva/química
2.
Biochem Biophys Res Commun ; 712-713: 149946, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38643717

RESUMO

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbß3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.


Assuntos
Apolipoproteínas A , Plaquetas , Agregação Plaquetária , Trombose , Humanos , Trombose/genética , Trombose/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Polimorfismo Genético , Apoproteína(a)/genética , Apoproteína(a)/metabolismo , Apoproteína(a)/química , Selectina-P/genética , Selectina-P/metabolismo
3.
Blood ; 140(19): 2063-2075, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040436

RESUMO

Studies have shown significantly increased thromboembolic events at high altitude. We recently reported that transferrin could potentiate blood coagulation, but the underlying mechanism for high altitude-related thromboembolism is still poorly understood. Here, we examined the activity and concentration of plasma coagulation factors and transferrin in plasma collected from long-term human residents and short-stay mice exposed to varying altitudes. We found that the activities of thrombin and factor XIIa (FXIIa) along with the concentrations of transferrin were significantly increased in the plasma of humans and mice at high altitudes. Furthermore, both hypoxia (6% O2) and low temperature (0°C), 2 critical high-altitude factors, enhanced hypoxia-inducible factor 1α (HIF-1α) levels to promote the expression of the transferrin gene, whose enhancer region contains HIF-1α binding site, and consequently, to induce hypercoagulability by potentiating thrombin and FXIIa. Importantly, thromboembolic disorders and pathological insults in mouse models induced by both hypoxia and low temperature were ameliorated by transferrin interferences, including transferrin antibody treatment, transferrin downregulation, and the administration of our designed peptides that inhibit the potentiation of transferrin on thrombin and FXIIa. Thus, low temperature and hypoxia upregulated transferrin expression-promoted hypercoagulability. Our data suggest that targeting the transferrin-coagulation pathway is a novel and potentially powerful strategy against thromboembolic events caused by harmful environmental factors under high-altitude conditions.


Assuntos
Altitude , Trombofilia , Camundongos , Humanos , Animais , Transferrina/genética , Trombina/metabolismo , Temperatura , Hipóxia/metabolismo , Trombofilia/etiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
4.
FASEB J ; 37(11): e23221, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795761

RESUMO

Ubiquitin fold modifier 1 is a small ubiquitin-like protein modifier that is essential for embryonic development of metazoans. Although UFMylation has been connected to endoplasmic reticulum homeostasis, the underlying mechanisms and the relevant cellular targets are largely unknown. Here, we show that HRD1, a ubiquitin ligase of ER-associated protein degradation (ERAD), is a novel substrate of UFM1 conjugation. HRD1 interacts with UFMylation components UFL1 and DDRGK1 and is UFMylated at Lys610 residue. In UFL1-depleted cells, the stability of HRD1 is increased and its ubiquitination modification is reduced. In the event of ER stress, the UFMylation and ubiquitination modification of HRD1 is gradually inhibited over time. Alteration of HRD1 Lys610 residue to arginine impairs its ability to degrade unfolded or misfolded proteins to disturb protein processing in ER. These results suggest that UFMylation of HRD1 facilitates ERAD function to maintain ER homeostasis.


Assuntos
Estresse do Retículo Endoplasmático , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Ubiquitina/metabolismo , Homeostase , Degradação Associada com o Retículo Endoplasmático
5.
Immunity ; 43(6): 1137-47, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26680206

RESUMO

Atherosclerosis is a chronic inflammatory disease of arterial wall. Mitochondrial DNA (mtDNA) and human antimicrobial peptide LL-37 (Cramp in mice) are involved in atherosclerosis. Recently, mtDNA has been found to escape from autophagy and cause inflammation. Normally, mtDNA as an inflammatogenic factor cannot escape from autophagy and degradation by DNase II. In this study, we found elevated amounts of LL37-mtDNA complex in atherosclerotic plasma and plaques. The complex was resistant to DNase II degradation and escaped from autophagic recognition, leading to activation of Toll-like receptor 9 (TLR9)-mediated inflammatory responses. Mouse model studies indicated that Cramp-mtDNA complex aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice and antibody treatment against the complex alleviated the lesion. These findings suggest that the LL-37-mtDNA complex acts as a key mediator of atherosclerosis formation, and thus represents a promising therapeutic target.


Assuntos
Aterosclerose/metabolismo , Autofagia/fisiologia , Catelicidinas/metabolismo , DNA Mitocondrial/metabolismo , Placa Aterosclerótica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Peptídeos Catiônicos Antimicrobianos , Aterosclerose/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Placa Aterosclerótica/patologia
6.
Cell Mol Life Sci ; 79(5): 240, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416530

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Animais , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Cininas , Camundongos , Acidente Vascular Cerebral/tratamento farmacológico , Tromboinflamação , Trombose/tratamento farmacológico
7.
Blood ; 136(8): 974-988, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32584951

RESUMO

Several adaptor molecules bind to cytoplasmic tails of ß-integrins and facilitate bidirectional signaling, which is critical in thrombosis and hemostasis. Interfering with integrin-adaptor interactions spatially or temporally to inhibit thrombosis without affecting hemostasis is an attractive strategy for the development of safe antithrombotic drugs. We show for the first time that the 14-3-3ζ-c-Src-integrin-ß3 complex is formed during platelet activation. 14-3-3ζ-c-Src interaction is mediated by the -PIRLGLALNFSVFYYE- fragment (PE16) on the 14-3-3ζ and SH2-domain on c-Src, whereas the 14-3-3ζ-integrin-ß3 interaction is mediated by the -ESKVFYLKMKGDYYRYL- fragment (EL17) on the 14-3-3ζ and -KEATSTF- fragment (KF7) on the ß3-integrin cytoplasmic tail. The EL17-motif inhibitor, or KF7 peptide, interferes with the formation of the 14-3-3ζ-c-Src-integrin-ß3 complex and selectively inhibits ß3 outside-in signaling without affecting the integrin-fibrinogen interaction, which suppresses thrombosis without causing significant bleeding. This study characterized a previously unidentified 14-3-3ζ-c-Src-integrin-ß3 complex in platelets and provided a novel strategy for the development of safe and effective antithrombotic treatments.


Assuntos
Proteínas 14-3-3/metabolismo , Integrina beta3/metabolismo , Ativação Plaquetária , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Proteínas 14-3-3/genética , Adulto , Animais , Feminino , Células HEK293 , Humanos , Integrina beta3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Ativação Plaquetária/genética , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Transdução de Sinais/fisiologia
8.
Circ Res ; 127(5): 651-663, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32450779

RESUMO

RATIONALE: Epidemiological studies have identified an associate between iron deficiency (ID) and the use of oral contraceptives (CC) and ischemic stroke (IS). To date, however, the underlying mechanism remains poorly understood. Both ID and CC have been demonstrated to upregulate the level and iron-binding ability of Tf (transferrin), with our recent study showing that this upregulation can induce hypercoagulability by potentiating FXIIa/thrombin and blocking antithrombin-coagulation proteases interactions. OBJECTIVE: To investigate whether Tf mediates IS associated with ID or CC and the underlying mechanisms. METHODS AND RESULTS: Tf levels were assayed in the plasma of IS patients with a history of ID anemia, ID anemia patients, venous thromboembolism patients using CC, and ID mice, and in the cerebrospinal fluid of some IS patients. Effects of ID and estrogen administration on Tf expression and coagulability and the underlying mechanisms were studied in vivo and in vitro. High levels of Tf and Tf-thrombin/FXIIa complexes were found in patients and ID mice. Both ID and estrogen upregulated Tf through hypoxia and estrogen response elements located in the Tf gene enhancer and promoter regions, respectively. In addition, ID, administration of exogenous Tf or estrogen, and Tf overexpression promoted platelet-based thrombin generation and hypercoagulability and thus aggravated IS. In contrast, anti-Tf antibodies, Tf knockdown, and peptide inhibitors of Tf-thrombin/FXIIa interaction exerted anti-IS effects in vivo. CONCLUSIONS: Our findings revealed that certain factors (ie, ID and CC) upregulating Tf are risk factors of thromboembolic diseases decipher a previously unrecognized mechanistic association among ID, CC, and IS and provide a novel strategy for the development of anti-IS medicine by interfering with Tf-thrombin/FXIIa interactions.


Assuntos
Anemia Ferropriva/complicações , Coagulação Sanguínea , Anticoncepcionais Orais Hormonais/efeitos adversos , Estrogênios/toxicidade , AVC Isquêmico/etiologia , Trombofilia/etiologia , Transferrina/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia Ferropriva/sangue , Anemia Ferropriva/diagnóstico , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Fator XIIa/metabolismo , Feminino , Humanos , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Trombina/metabolismo , Trombofilia/sangue , Trombofilia/diagnóstico , Regulação para Cima , Adulto Jovem
9.
Arch Toxicol ; 95(11): 3589-3599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34519865

RESUMO

Venomous snakebites cause clinical manifestations that range from local to systemic and are considered a significant global health challenge. Persistent or refractory thrombocytopenia has been frequently reported in snakebite patients, especially in cases caused by viperidae snakes. Viper envenomation-induced thrombocytopenia may persist in the absence of significant consumption coagulopathy even after the antivenom treatment, yet the mechanism remains largely unknown. Our study aims to investigate the mechanism and discover novel therapeutic targets for coagulopathy-independent thrombocytopenia caused by viper envenomation. Here we found that patients bitten by Protobothrops mucrosquamatus and Trimeresurus stejnegeri, rather than Naja. atra may develop antivenom-resistant and coagulopathy-independent thrombocytopenia. Crude venoms and the derived C-type lectin-like proteins from these vipers significantly increased platelet surface expression of neuraminidase and platelet desialylation, therefore led to platelet ingestion by both macrophages and hepatocytes in vitro, and drastically decreased peripheral platelet counts in vivo. Our study is the first to demonstrate that desialylation-mediated platelet clearance is a novel mechanism of viper envenomation-induced refractory thrombocytopenia and C-type lectin-like proteins derived from the viper venoms contribute to snake venom-induced thrombocytopenia. The results of this study suggest the inhibition of platelet desialylation as a novel therapeutic strategy against viper venom-induced refractory thrombocytopenia.


Assuntos
Hepatócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Trombocitopenia/etiologia , Venenos de Víboras/toxicidade , Animais , Antivenenos/farmacologia , Plaquetas/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neuraminidase/metabolismo , Mordeduras de Serpentes/complicações , Trombocitopenia/patologia , Venenos de Víboras/química , Viperidae
10.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443497

RESUMO

Soy diet is thought to help prevent cardiovascular diseases in humans. Isoflavone, which is abundant in soybean and other legumes, has been reported to possess antiplatelet activity and potential antithrombotic effect. Our study aims to elucidate the potential target of soy isoflavone in platelet. The anti-thrombosis formation effect of genistein and daidzein was evaluated in ex vivo perfusion chamber model under low (300 s-1) and high (1800 s-1) shear forces. The effect of genistein and daidzein on platelet aggregation and spreading was evaluated with platelets from both wildtype and GPIbα deficient mice. The interaction of these soy isoflavone with 14-3-3ζ was detected by surface plasmon resonance (SPR) and co-immunoprecipitation, and the effect of αIIbß3-mediated outside-in signaling transduction was evaluated by western blot. We found both genistein and daidzein showed inhibitory effect on thrombosis formation in perfusion chamber, especially under high shear force (1800 s-1). These soy isoflavone interact with 14-3-3ζ and inhibited both GPIb-IX and αIIbß3-mediated platelet aggregation, integrin-mediated platelet spreading and outside-in signaling transduction. Our findings indicate that 14-3-3ζ is a novel target of genistein and daidzein. 14-3-3ζ, an adaptor protein that regulates both GPIb-IX and αIIbß3-mediated platelet activation is involved in soy isoflavone mediated platelet inhibition.


Assuntos
Proteínas 14-3-3/metabolismo , Plaquetas/metabolismo , Glycine max/química , Isoflavonas/farmacologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Transdução de Sinais , Animais , Fibrinogênio/metabolismo , Genisteína/química , Genisteína/farmacologia , Proteínas Imobilizadas/metabolismo , Isoflavonas/química , Masculino , Camundongos Endogâmicos C57BL , Agregação Plaquetária/efeitos dos fármacos , Trombose/patologia
11.
FASEB J ; 28(9): 3919-29, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24868009

RESUMO

Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 µg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor ß1 (TGF-ß1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.


Assuntos
Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/farmacologia , Regeneração/fisiologia , Pele/metabolismo , Urodelos/metabolismo , Cicatrização/fisiologia , Animais , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas Imunoenzimáticas , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fragmentos de Peptídeos/química , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/crescimento & desenvolvimento , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Urodelos/crescimento & desenvolvimento , Cicatrização/efeitos dos fármacos
12.
Front Endocrinol (Lausanne) ; 14: 1123769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455916

RESUMO

Misfolded proteins retained in the endoplasmic reticulum cause many human diseases. ER-associated degradation (ERAD) is one of the protein quality and quantity control system located at ER, which is responsible for translocating the misfolded proteins or properly folded but excess proteins out of the ER for proteasomal degradation. Recent studies have revealed that mice with ERAD deficiency in specific cell types exhibit impaired metabolism homeostasis and metabolic diseases. Here, we highlight the ERAD physiological functions in metabolic disorders in a substrate-dependent and cell type-specific manner.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Doenças Metabólicas , Humanos , Animais , Camundongos , Proteínas
13.
J Thromb Haemost ; 21(5): 1274-1288, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732162

RESUMO

BACKGROUND: Platelet GPIbα-von Willebrand factor (VWF) interaction initiates platelet adhesion, activation, and thrombus growth, especially under high shear conditions. Therefore, the GPIb-VWF axis has been suggested as a promising target against arterial thrombosis. The polysaccharide fucoidan has been reported to have opposing prothrombotic and antithrombotic effects; however, its binding mechanism with platelets has not been adequately studied. OBJECTIVE: The objective of this study was to explore the mechanism of fucoidan and its hydrolyzed products in thrombosis and hemostasis. METHODS: Natural fucoidan was hydrolyzed by using hydrochloric acid and was characterized by using size-exclusion chromatography, UV-visible spectroscopy, and fluorometry techniques. The effects of natural and hydrolyzed fucoidan on platelet aggregation were examined by using platelets from wild-type, VWF and fibrinogen-deficient, GPIbα-deficient, and IL4Rα/GPIbα-transgenic and αIIb-deficient mice and from human beings. Platelet activation markers (P-selectin expression, PAC-1, and fibrinogen binding) and platelet-VWF A1 interaction were measured by using flow cytometry. GPIbα-VWF A1 interaction was evaluated by using enzyme-linked immunosorbent assay. GPIb-IX-induced signal transduction was detected by using western blot. Heparinized whole blood from healthy donors was used to test thrombus formation and growth in a perfusion chamber. RESULTS: We found that GPIbα is critical for fucoidan-induced platelet activation. Fucoidan interacted with the extracellular domain of GPIbα and blocked its interaction with VWF but itself could lead to GPIbα-mediated signal transduction and, subsequently, αIIbß3 activation and platelet aggregation. Conversely, low-molecular weight fucoidan inhibited GPIb-VWF-mediated platelet aggregation, spreading, and thrombus growth at high shear. CONCLUSION: Fucoidan-GPIbα interaction may have unique therapeutic potential against bleeding disorders in its high-molecular weight state and protection against arterial thrombosis by blocking GPIb-VWF interaction after fucoidan is hydrolyzed.


Assuntos
Trombose , Fator de von Willebrand , Humanos , Animais , Camundongos , Fator de von Willebrand/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Polissacarídeos/farmacologia , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Trombose/metabolismo , Fibrinogênio/metabolismo , Ligação Proteica
14.
Research (Wash D C) ; 6: 0124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223472

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 virus is an ongoing global health burden. Severe cases of COVID-19 and the rare cases of COVID-19 vaccine-induced-thrombotic-thrombocytopenia (VITT) are both associated with thrombosis and thrombocytopenia; however, the underlying mechanisms remain inadequately understood. Both infection and vaccination utilize the spike protein receptor-binding domain (RBD) of SARS-CoV-2. We found that intravenous injection of recombinant RBD caused significant platelet clearance in mice. Further investigation revealed the RBD could bind platelets, cause platelet activation, and potentiate platelet aggregation, which was exacerbated in the Delta and Kappa variants. The RBD-platelet interaction was partially dependent on the ß3 integrin as binding was significantly reduced in ß3-/- mice. Furthermore, RBD binding to human and mouse platelets was significantly reduced with related αIIbß3 antagonists and mutation of the RGD (arginine-glycine-aspartate) integrin binding motif to RGE (arginine-glycine-glutamate). We developed anti-RBD polyclonal and several monoclonal antibodies (mAbs) and identified 4F2 and 4H12 for their potent dual inhibition of RBD-induced platelet activation, aggregation, and clearance in vivo, and SARS-CoV-2 infection and replication in Vero E6 cells. Our data show that the RBD can bind platelets partially though αIIbß3 and induce platelet activation and clearance, which may contribute to thrombosis and thrombocytopenia observed in COVID-19 and VITT. Our newly developed mAbs 4F2 and 4H12 have potential not only for diagnosis of SARS-CoV-2 virus antigen but also importantly for therapy against COVID-19.

15.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36558895

RESUMO

Doxorubicin (Dox) is a widely utilized chemotherapeutic; however, it carries side effects, including drug-induced immune thrombocytopenia (DITP) and increased risk of venous thromboembolism (VTE). Currently, the mechanisms for Dox-associated DITP and VTE are poorly understood, and an effective inhibitor to relieve these complications remains to be developed. In this study, we found that Dox significantly induced platelet activation and enhanced platelet phagocytosis by macrophages and accelerated platelet clearance. Importantly, we determined that salvianolic acid C (SAC), a water-soluble compound derived from Danshen root traditionally used to treat cardiovascular diseases, inhibited Dox-induced platelet activation more effectively than current standard-of-care anti-platelet drugs aspirin and ticagrelor. Mechanism studies with tyrosine kinase inhibitors indicate contributions of phospholipase C, spleen tyrosine kinase, and protein kinase C signaling pathways in Dox-induced platelet activation. We further demonstrated that Dox enhanced platelet-cancer cell interaction, which was ameliorated by SAC. Taken together, these findings suggest SAC may be a promising therapy to reduce the risk of Dox-induced DITP, VTE, and the repercussions of amplified platelet-cancer interaction in the tumor microenvironment.

16.
Front Immunol ; 12: 775678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899734

RESUMO

As said by former United Nations Secretary-General Kofi Annan, "Snakebite is the most important tropical disease you've never heard of." Listed as a priority neglected tropical disease by the World Health Organization, snakebite envenoming (SBE) kills in excess of 125,000 people per year. However, due to the complexity and overlap of snake venom compositions, few reliable venom diagnostic methods for genus-/species-specific identification, which is crucial for successful SBE therapy, are available. Here, we develop a strategy to select and prepare genus-specific snake venom antibodies, which allows rapid and efficient clinical diagnosis of snakebite. Multi-omics approaches are used to choose candidate antigens from snake venoms and identify genus-specific antigenic epitope peptide fragments (GSAEPs) with ideal immunogenicity, specificity, and spatial accessibility. Double-antibody sandwich ELISA kit was established by matching a polyclonal antibody against a natural antigen and a monoclonal antibody that was prepared by natural protein as antigen and can specifically target the GSAEPs. The kit shows the ability to accurately identify venoms from similar genera of Trimeresurus and Protobothrops with a detection limit of 6.25 ng/ml on the snake venoms and a little cross-reaction, thus proving high feasibility and applicability.


Assuntos
Antivenenos/imunologia , Ensaio de Imunoadsorção Enzimática , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/imunologia , Venenos de Serpentes/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antivenenos/química , Ensaio de Imunoadsorção Enzimática/métodos , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Conformação Proteica , Sensibilidade e Especificidade , Venenos de Serpentes/química , Especificidade da Espécie , Relação Estrutura-Atividade
17.
Front Cell Dev Biol ; 9: 782427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966742

RESUMO

5-Hydroxymethylfurfural (5-HMF) is a common reaction product during heat processing and the preparation of many types of foods and Traditional Chinese Medicine formulations. The aim of this study was to evaluate the protective effect of 5-HMF on endotoxin-induced acute lung injury (ALI) and the underlying mechanisms. Our findings indicate that 5-HMF attenuated lipopolysaccharide (LPS)-induced ALI in mice by mitigating alveolar destruction, neutrophil infiltration and the release of inflammatory cytokines. Furthermore, the activation of macrophages and human monocytes in response to LPS was remarkably suppressed by 5-HMF in vitro through inhibiting the NF-κB signaling pathway, NLRP3 inflammasome activation and endoplasmic reticulum (ER) stress. The inhibitory effect of 5-HMF on NLRP3 inflammasome was reversed by overexpressing ATF4 or CHOP, indicating the involvement of ER stress in the negative regulation of 5-HMF on NLRP3 inflammasome-mediated inflammation. Consistent with this, the ameliorative effect of 5-HMF on in vivo pulmonary dysfunction were reversed by the ER stress inducer tunicamycin. In conclusion, our findings elucidate the anti-inflammatory and protective efficacy of 5-HMF in LPS-induced acute lung injury, and also demonstrate the key mechanism of its action against NLRP3 inflammasome-related inflammatory disorders via the inhibition of ER stress.

18.
Sci Rep ; 11(1): 11663, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083615

RESUMO

The interaction of platelet GPIbα with von Willebrand factor (VWF) is essential to initiate platelet adhesion and thrombosis, particularly under high shear stress conditions. However, no drug targeting GPIbα has been developed for clinical practice. Here we characterized anfibatide, a GPIbα antagonist purified from snake (Deinagkistrodon acutus) venom, and evaluated its interaction with GPIbα by surface plasmon resonance and in silico modeling. We demonstrated that anfibatide interferds with both VWF and thrombin binding, inhibited ristocetin/botrocetin- and low-dose thrombin-induced human platelet aggregation, and decreased thrombus volume and stability in blood flowing over collagen. In a single-center, randomized, and open-label phase I clinical trial, anfibatide was administered intravenously to 94 healthy volunteers either as a single dose bolus, or a bolus followed by a constant rate infusion of anfibatide for 24 h. Anfibatide inhibited VWF-mediated platelet aggregation without significantly altering bleeding time or coagulation. The inhibitory effects disappeared within 8 h after drug withdrawal. No thrombocytopenia or anti-anfibatide antibodies were detected, and no serious adverse events or allergic reactions were observed during the studies. Therefore, anfibatide was well-tolerated among healthy subjects. Interestingly, anfibatide exhibited pharmacologic effects in vivo at concentrations thousand-fold lower than in vitro, a phenomenon which deserves further investigation.Trial registration: Clinicaltrials.gov NCT01588132.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Venenos de Crotalídeos/uso terapêutico , Fibrinolíticos/uso terapêutico , Lectinas Tipo C/uso terapêutico , Complexo Glicoproteico GPIb-IX de Plaquetas/antagonistas & inibidores , Venenos de Serpentes/uso terapêutico , Animais , Coagulação Sanguínea/efeitos dos fármacos , Venenos de Crotalídeos/química , Venenos de Crotalídeos/isolamento & purificação , Venenos de Crotalídeos/farmacocinética , Crotalinae , Fibrinolíticos/química , Fibrinolíticos/isolamento & purificação , Fibrinolíticos/farmacocinética , Voluntários Saudáveis , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/isolamento & purificação , Modelos Moleculares , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Ligação Proteica , Conformação Proteica , Ristocetina/farmacologia , Venenos de Serpentes/química , Venenos de Serpentes/isolamento & purificação , Venenos de Serpentes/farmacocinética , Relação Estrutura-Atividade , Trombina/farmacologia , Trombose/prevenção & controle , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-33001021

RESUMO

Platelets are small blood cells known primarily for their ability to adhere and aggregate at injured vessels to arrest bleeding. However, when triggered under pathological conditions, the same adaptive mechanism of platelet adhesion and aggregation may cause thrombosis, a primary cause of heart attack and stroke. Over recent decades, research has made considerable progress in uncovering the intricate and dynamic interactions that regulate these processes. Integrins are heterodimeric cell surface receptors expressed on all metazoan cells that facilitate cell adhesion, movement, and signaling, to drive biological and pathological processes such as thrombosis and hemostasis. Recently, our group discovered that the plexin-semaphorin-integrin (PSI) domains of the integrin ß subunits exert endogenous thiol isomerase activity derived from their two highly conserved CXXC active site motifs. Given the importance of redox reactions in integrin activation and its location in the knee region, this PSI domain activity may be critically involved in facilitating the interconversions between integrin conformations. Our monoclonal antibodies against the ß3 PSI domain inhibited its thiol isomerase activity and proportionally attenuated fibrinogen binding and platelet aggregation. Notably, these antibodies inhibited thrombosis without significantly impairing hemostasis or causing platelet clearance. In this review, we will update mechanisms of thrombosis and hemostasis, including platelet versatilities and immune-mediated thrombocytopenia, discuss critical contributions of the newly discovered PSI domain thiol isomerase activity, and its potential as a novel target for anti-thrombotic therapies and beyond.


Assuntos
Plaquetas/patologia , Hemostasia , Trombose/patologia , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Integrinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ativação Plaquetária , Semaforinas/metabolismo , Trombocitopenia/sangue , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Trombose/sangue , Trombose/metabolismo
20.
Thromb Haemost ; 120(10): 1432-1441, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32717755

RESUMO

Bleeding and thrombocytopenia to readministration are the most serious side effects of clinical integrin αIIbß3 antagonists such as RGD-containing peptides. Here we show that a non-RGD peptide ZDPI, identified from skin secretions of Amolops loloensis, inhibited platelet aggregation induced by agonists, such as adenosine diphosphate, collagen, arachidonic acid, PAR1AP, and integrin αIIbß3 allosteric activator, and reduces soluble fibrinogen binding to activated platelets without perturbing adhesion numbers on immobilized fibrinogen. Further study showed that ZDPI preferred to bind to the active conformation of integrin αIIbß3, and thus inhibited c-Src-mediated integrin signaling transduction. In contrast to currently used clinical blockers of integrin αIIbß3, which are all conformation-unspecific blockers, ZDPI conformation specifically binds to activated integrin αIIbß3, subsequently suppressing platelet spreading. In vivo study revealed that ZDPI inhibited carotid arterial thrombosis with limited bleeding and thrombocytopenia. A non-RGD peptide which targets the active conformation of integrin αIIbß3, such as ZDPI, might be an excellent candidate or template to develop antithrombotics without significant bleeding and thrombocytopenia side effects.


Assuntos
Plaquetas/efeitos dos fármacos , Peptídeos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Animais , Plaquetas/citologia , Plaquetas/metabolismo , Fibrinogênio/metabolismo , Hemorragia/induzido quimicamente , Humanos , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/efeitos adversos , Peptídeos/química , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Conformação Proteica/efeitos dos fármacos , Trombocitopenia/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa