RESUMO
Inflammatory breast cancer (IBC) is a rare and highly invasive form of breast cancer, renowned for its aggressive behavior, malignant capacity, and unfavorable prognosis. Despite considerable advancements in comprehending the underlying biology of IBC, the immune cell infiltration (ICI) profile in IBC remains inadequately elucidated. The current work endeavors to investigate the ICI characteristics of IBC and ascertain the pivotal immune cell subtypes and genes that impact its prognosis. The present study employed microarray data from the GEO database to demonstrate that IBC exhibited a lower abundance of activated mast cells (AMC) in comparison to non-inflammatory breast cancer (nIBC) or normal breast tissue (NBT). Additionally, the mRNA expression level of the gene polo-like kinase 5 (PLK5), which was correlated with AMC, was found to be lower in IBC relative to nIBC or NBT. Furthermore, this investigation provided compelling evidence indicating a potential association between a decreased mRNA expression level of PLK5 and a shorter progression-free survival in patients with breast cancer. The gene set enrichment analysis performed on PLK5 revealed that the gene expression in IBC was closely associated with diverse immune functions and pathways. Besides, a negative correlation has been established between PLK5 mRNA expression level and a majority of immune checkpoint-related genes, thereby suggesting the potential suitability of immunotherapy treatment for IBC. In summary, this study offers valuable insights into the ICI profile of IBC and identifies potential target PLK5 for improving its clinical management.
RESUMO
Research on novel bioactive lipids has garnered increasing interest. Although lipids can be identified by searching mass spectral libraries, the discovery of novel lipids remains challenging as the query spectra of such lipids are not included in libraries. In this study, we propose a strategy to discover novel carboxylic acid-containing acyl lipids by integrating molecular networking with an extended in silico spectral library. Derivatization was performed to improve the response of this method. The tandem mass spectrometry spectra enriched by derivatization facilitated the formation of molecular networking and 244 nodes were annotated. We constructed consensus spectra for these annotations based on molecular networking and developed an extended in silico spectral library based on these consensus spectra. The spectral library included 6879 in silico molecules covering 12,179 spectra. Using this integration strategy, 653 acyl lipids were discovered. Among these, O-acyl lactic acids and N-lactoyl amino acid-conjugated lipids were annotated as novel acyl lipids. Compared with conventional methods, our proposed method allows for the discovery of novel acyl lipids, and extended in silico libraries significantly increase the size of the spectral library.
Assuntos
Aminoácidos , Software , Espectrometria de Massas em Tandem/métodos , Biblioteca Gênica , Lipídeos/análiseRESUMO
INTRODUCTION: Human respiratory syncytial virus (HRSV) infection causes significant morbidity, and no effective treatments are currently available. Viral infections induce substantial metabolic changes in the infected cells to optimize viral production. Metabolites that reflect the interactions between host cells and viruses provided an opportunity to identify the pathways underlying severe infections. OBJECTIVE: To better understand the metabolic changes caused by HRSV infection, we analyzed temporal metabolic profiling to provide novel targets for therapeutic strategies for inhaled HRSV infection. METHODS: The epithelial cells and BALB/c mice were infected with HRSV. Protein and mRNA levels of inflammation factors were measured by using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Untargeted metabolomics, lipidomics and proteomics were performed using liquid chromatography coupled with mass spectrometry to profile the metabolic phenotypic alterations in HRSV infection. RESULTS: In this study, we evaluated the inflammatory responses in vivo and in vitro and investigated the temporal metabolic rewiring of HRSV infection in epithelial cells. We combined metabolomics and proteomic analyses to demonstrate that the redox imbalance was further provoked by increasing glycolysis and anaplerotic reactions. These responses created an oxidant-rich microenvironment that elevated reactive oxygen species levels and exacerbated glutathione consumption. CONCLUSION: These observations indicate that adjusting for metabolic events during a viral infection could represent a valuable approach for reshaping the outcome of infections.
Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Humanos , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/genética , Proteômica , Metabolômica , Células Epiteliais/metabolismoRESUMO
Major depressive disorder (MDD) affects approximately 16% of the global population. Our previous study has demonstrated that icariin (ICA) exhibits anti-depressant activity by increasing the expression of Brain-Derived Neurotrophic Factor (BDNF) in a rat model of chronic unpredictable mild stress (CUMS). In this study, we investigated whether and how ICA can prevent CUMS-induced depression-like behaviors in rats by modulating hippocampus neuronal apoptosis. Forty male rats were randomly divided into control, CUMS, CUMS-fluoxetine (Flx) (10 mg/kg), and CUMS-ICA (20 mg/kg) groups. Behavior tests including sucrose preference test (SPT), open field test (OFT), elevated plus-maze (EPM), and forced swimming tests (FST) were performed. The Nissl staining and TUNNEL assay were used to determine neuronal apoptosis. Subsequently, expression of the glucocorticoid receptor (GR), Bcl-2, cytochrome C, caspase-3 and Bax in the hippocampus was tested by western blot. Our results show that a chronic administration of ICA (20 mg/kg) can prevent CUMS-induced depressant-like behaviors in male model rats. Additionally, ICA significantly inhibited mitochondrial translocation of GR, reduced mitochondrial outer membrane permeabilization (MOMP) to suppress the release of cytochrome C, and then inhibit the activation of caspase-3. In conclusion, our research provides new evidence to understand the anti-depressant activity of ICA, which relates to its inhibition of neuronal apoptosis in the hippocampus through the mitochondrial apoptotic pathway.
Assuntos
Citocromos c , Transtorno Depressivo Maior , Animais , Masculino , Ratos , Apoptose , Proteína X Associada a bcl-2 , Caspase 3 , Citoplasma , Transtorno Depressivo Maior/tratamento farmacológicoRESUMO
Oxaliplatin (OXA) has been recognized as a third-generation platinum-based chemotherapeutic agent with stellar therapeutic efficacy in managing colorectal cancer (CRC). Nevertheless, resistance to OXA in CRC patients hinders its effectiveness. Shikonin (SHI), a natural naphthoquinone derived from Arnebia euchroma (Royle) Johnst., features a broad pharmacological profile and minimal toxicities. To assess the synergism of SHI and OXA towards OXA-resistant CRC cells (HCT116R ), we employed in vitro and in vivo pharmacological assays. Our experiments provided evidence that SHI, either alone or in combination with OXA, considerably reduced cell proliferation, triggered apoptosis, and induced the generation of reactive oxygen species (ROS) in HCT116R cells. Furthermore, the combination of SHI and OXA dramatically curbed the extent of HCT116R -initiated xenograft growth in mouse models. Bioinformatics, western blot, and ROS assays highlighted that the mechanisms of SHI against OXA-resistant CRC cells may involve the induction of cellular responses to chemical stress, intrinsic apoptosis, as well as endoplasmic reticulum stress pathways mediated by ROS. Notably, the synergism of SHI+OXA was partially abrogated by an ROS inhibitor N-acetyl cysteine. Our findings imply the potential of SHI to boost the sensitivity of OXA to CRC, offering promising benefits for clinical strategies to combat OXA resistance.
Assuntos
Neoplasias Colorretais , Naftoquinonas , Animais , Camundongos , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Estresse do Retículo EndoplasmáticoRESUMO
Erlotinib (ERL) is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of pancreatic cancer (PC). However, the clinical efficacy of ERL is limited due to the activation of alternative pathways that bypass the EGFR signaling. Kaempferol (KAE), a natural flavonoid compound, has been reported to possess potent anti-tumor and anti-inflammatory properties, and in this study, we aimed at identifying the sensitization effect of KAE on ERL monotherapy in PC cells and mouse models. Briefly, the CCK-8, colony formation, and flow cytometry were used to assess the proliferation and apoptosis of two PC cell lines in response to a treatment combination of KAE and ERL. Additionally, the drug-disease targets and related anti-PC mechanisms of KAE and ERL were predicted with a network pharmacology method. The survival outcome for PC patients with EGFR differential expression was evaluated through survival analysis. The molecular docking technique predicted the affinity between KAE and EGFR. Moreover, western blot (WB) and immunohistochemistry (IHC) analyses were applied to verify the expression levels of related proteins. As a result, in vitro results showed that the combination of KAE and ERL significantly inhibited cell proliferation and promoted cell apoptosis compared to that with ERL alone. Network pharmacology results demonstrated that KAE sensitized PC to ERL treatment may likely be related to the PI3K/AKT signaling pathway and EGFR TKI resistance. Survival analysis illustrated that PC patients with high expression of EGFR had a relative lower survival rate. Molecular docking results further suggested that KAE had a high binding affinity of - 8.9 kcal/mol with EGFR. WB results indicated that the combination of KAE and ERL dramatically downregulated the expression levels of p-EGFR, p-AKT, p-ERK1/2, and Bcl-2, and upregulated the expression levels of cleaved caspase-9, cleaved PARP, and Bax. The in vivo results revealed that treatment combination of KAE and ERL further reduced the volume and weight of subcutaneous grafted tumors. IHC results confirmed the WB results. These data imply that KAE may be a valid therapeutic candidate to potentiate PC cell sensitivity to ERL via inhibiting PI3K/AKT and EGFR signaling.
Assuntos
Cloridrato de Erlotinib/farmacologia , Quempferóis/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/administração & dosagem , Feminino , Humanos , Quempferóis/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Ponicidin (PON), a natural diterpenoid compound, has been shown to exhibit potent anticancer activities in a wide variety of cancers, including colorectal cancer (CRC). Nevertheless, the precise mechanisms underlying the anti-metastasis effect of PON have not yet been completely defined. The present study was designed to uncover the inhibitory effect of PON on epithelial-mesenchymal transition (EMT), migration and invasion of HCT116 cells induced by pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in vitro, and liver metastasis in vivo. Briefly, cell proliferation was assessed by Cell Counting Kit-8 assay, followed by wound healing and transwell assays to evaluate cell migration and invasion. The EMT-related molecular markers were determined through quantitative real-time polymerase chain reaction (qPCR), immunofluorescence (IF), western blot (WB), and immunohistochemistry (IHC). Additionally, WB was used to assess the expression of AKT, phosphorylated AKT (p-AKT), GSK-3ß, and phosphorylated GSK-3ß (p-GSK-3ß). As a result, PON could effectively suppress EMT, migration, and invasion in HCT116 cells in vitro, and liver metastasis of HCT116 cells in vivo. Additionally, PON administration also dramatically altered the expression of EMT-associated markers such as E-cadherin, N-cadherin, and Vimentin, and suppressed the expression of p-AKT, p-GSK-3ß and transcription factor, Snail in a dose-dependent manner. Moreover, the incidence of liver metastasis in the control group was 100% and although the incidence of liver metastasis did not decrease, the number of metastatic nodules in the livers of each PON dose group decreased by (34 ± 4.2)%, (64 ± 3.6)%, and (76 ± 5.3)%, respectively, compared to the control group. Collectively, these findings indicated that targeting the AKT/GSK-3ß/Snail pathway by PON might be a promising treatment for TNF-α-induced EMT and metastasis of CRC.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Diterpenos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metástase Neoplásica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HCT116 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição da Família Snail/metabolismoRESUMO
The characterization of alkaloids is challenging because of the diversity of structures and the complicated fragmentation of collision induced structural dissociation in mass spectrometry. In this study, we analyzed the alkaloids in Sinomenium acutum (Thunb.) Rehderet Wil by high resolution mass spectrometry. Chromatographic separation was achieved on a Phenomenex Kinetex C18 (2.1 mm × 100 mm, 2.6 µm) column with a mobile phase consisting of acetonitrile and water (0.1% formic acid) under gradient elution. A total of 52 alkaloids were well separated and 45 of them were structurally characterized, including morphinans, aporphines, benzylisoquinolines, and protoberberines. Specially, mass spectrometric study of the morphinan alkaloids were explicitly investigated. Electrostatic potential plot from simulation was calculated for determination of protonation sites. Further fragmentation analysis suggested that the C3H7N, CH4O, and H2O elimination was displayed in MS² spectrum. These fragmentation pathways are universal for morphinan alkaloids having methoxy substituted cyclohexenone or cyclohexadienone moieties. Additionally, for nitrogen oxides, an ion-neutral complex intermediate is involved in the fragmentation process, generating additional oxygenated ions. All these results provided the universal rules of fragmentation used for detection of alkaloids, and will be expected to be highly useful for comprehensive study of multi-components in the herbal medicine analysis.
Assuntos
Alcaloides/química , Alcaloides/isolamento & purificação , Sinomenium/química , Cromatografia Líquida , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificaçãoRESUMO
Jiegeng Gancao decoction, which is composed of Jiegeng and Gancao at a weight ratio of 1:2, was widely used for treating pharyngalgia and cough for thousands of years. Our previous work indicated that Gancao could increase the systemic exposure of platycodin D and deapio-platycodin D, two main components in Jiegeng. However, whether Jiegeng could alter the pharmacokinetics of the main compounds in Gancao is still unknown. Thus, the purpose of this study was to compare the oral pharmacokinetics of flavonoids and saponins from Gancao alone vs. after co-administration with Jiegeng. Furthermore, Caco-2 cell transport and fecal hydrolysis were investigated to explain the altered pharmacokinetic properties. Pharmacokinetics results suggested that the bioavailability of liquiritin, isoliquiritin, glycyrrhizin and its metabolite, glycyrrhetinic acid, could be improved while bioavailability of liquiritigenin and isoliquiritigenin deteriorated when co-administered with Jiegeng. The Caco-2 transport study showed no significant difference of the Papp values of the main components in Jiegeng Gancao decoction when compared with those in Gancao decoction (p > 0.05). The in vitro metabolism study suggested that saponins and flavonoids glycosides in Gancao were influenced and the metabolic characteristics of most ingredients were consistent with pharmacokinetic results, such as liquiritin and glycyrrhetinic acid. The hydrolysis of liquiritigenin and glycyrrhizin observed with fecal lysate in vitro appeared consistent with the oral pharmacokinetics. Based on experiments, the pharmacokinetic profiles of six components in Gancao were influenced by Jiegeng. The metabolic process might partially contribute to the altered pharmacokinetic behavior. The metabolism of some components of Gancao appeared to be inhibited when coadministered with Jiegeng, possibly by the Jiegeng constituent platycodin.
Assuntos
Flavonoides/química , Saponinas/química , Células CACO-2 , Chalcona/análogos & derivados , Chalcona/química , Flavanonas/química , Flavonoides/farmacocinética , Glucosídeos/química , Glycyrrhiza uralensis/química , Humanos , Saponinas/farmacocinética , Triterpenos/químicaRESUMO
Cryptotanshinone (CT), one major lipophilic component isolated from Salvia miltiorrhiza Bunge, has shown to possess chemopreventive properties against various types of cancer cells. In this study, CT was shown to be a potent anti-angiogenic agent in zebrafish, and mouse models and could limit tumor growth by inhibiting tumor angiogenesis. We further found that CT could inhibit the proliferation, migration, angiogenic sprouting, and tube formation of HUVECs. In addition, we demonstrated that CT could lower the level of TNF-α due to the destabilization of TNF-α mRNA, which associated with regulating 3'-untranslated region (3'-UTR) of TNF-α and preventing the translocation of RNA binding protein, HuR, from the nucleus to the cytoplasm. Moreover, the underlying mechanism responsible for the regulation in angiogenesis by CT was partially related to the suppression of NF-κB, and STAT3 activity. Based on the abilities of CT in targeting tumor cells, inhibiting angiogenesis, and destroying tumor vasculature, CT is worthy of further investigation for preventive, and therapeutic purposes in cancer. © 2015 Wiley Periodicals, Inc.
Assuntos
Inibidores da Angiogênese/administração & dosagem , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/tratamento farmacológico , Fenantrenos/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fenantrenos/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-ZebraRESUMO
Lipid metabolic pathways play pivotal roles in liver function, and disturbances of these pathways are associated with various diseases. Thus, comprehensive characterization and measurement of lipid metabolites are essential to deciphering the contributions of lipid network metabolism to diseases or its responses to drug intervention. Here, we report an integrated lipidomic analysis for the comprehensive detection of lipid metabolites. To facilitate the characterization of untargeted lipids through fragmentation analysis, nine formulas were proposed to identify the fatty acid composition of lipids from complex MS (n) spectrum information. By these formulas, the co-eluted isomeric compounds could be distinguished. In total, 250 lipids were detected and characterized, including diacylglycerols, triacylglycerols, glycerophosphoethanolamines, glycerophosphocholines, glycerophosphoserines, glycerophosphoglycerols, glycerophosphoinositols, cardiolipins, ceramides, and sphingomyelins. Integrated with the targeted lipidomics, a total of 27 inflammatory oxylipins were also measured. To evaluate the aberrant lipid metabolism involved in liver injury induced by Tripterygium wilfordii, lipid network metabolism was further investigated. Results indicated that energy lipid modification, membrane remodeling, potential signaling lipid alterations, and abnormal inflammation response were associated with injury. Because of the important roles of lipids in liver metabolism, this new method is expected to be useful in analyzing other lipid metabolism diseases.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Medicamentos de Ervas Chinesas/toxicidade , Lipídeos/química , Metabolômica/métodos , Tripterygium/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Medicamentos de Ervas Chinesas/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Tripterygium/metabolismoRESUMO
Tripterygium wilfordii Hook. f. induced-hepatotoxicity was the main limitation for its usage in clinic. Qingluo Tongbi formulation showed obvious attenuation for hepatotoxicity in clinic and fundamental research in vivo. To explore the potential mechanism of the attenuation, we conducted a study on the plasma metabolomic profiles of T. wilfordii and Qingluo Tongbi formulation in rats by a sensitive gas chromatography-mass spectrometry (GC-MS/MS) method. In plasma samples, a total of 72 compounds were analyzed by EI source MS, and were successfully identified by matching NIST database. The semi-quantification results were then calculated by OPLS-DA model with SIMCA-P 13.0 software. The three groups were clearly distinguished in OPLS-DA score plot. In addition, the observation values of Qingluo Tongbi formulation showed the obvious trend towards the control levels, suggesting the detoxicity effect of the formulation. Variation metabolites were further analyzed by VIP and One Way ANOVAs, and the results showed a significant increase in compounds of glycogenic amino acids, such as alanine, proline, serine and glutamine after the administration of T. wilfordii, indicated that the tissue proteins were decomposed and amino acids were leakage into blood. Qingluo Tongbi formulation could reverse the amino acids into normal level. On the contrary, the levels of glucose, lactic acid and hydroxy butyrate decrease, and the formulation can relieve the disorder in the levels of lactic acid, suggesting the regulation of the energy metabolism. Additionally, the level of branched chain amino acid was decreased, suggested the toxicity was induced, but the formulation cannot increase it into the normal levels. Nevertheless, all the above results suggested that the classical Qingluo Tongbi formulation displayed the liver protection effect by adjusting the amino acid levels and regulating the energy metabolism. Qingluo Tongbi formulation was developed based on traditional Chinese medicine theory "detoxicity compatibility", and contained Panax notoginseng (Burk.) F. H. Chen to nourish blood and absorb clots. Modern pharmacology suggested that its liver protection effect was correlated with the promotion of protein synthesis. Another important herb is Rehmannia glutinosa Libosch., which can regulate the energy metabolism. Both were consistent with the metabolomic results in this study, which explained the potential mechanism of "detoxicity compatibility" theory. Therefore, the currently developed metabolomic approach and the obtained results would be highly useful for the comprehensive toxicity studies for other herbal medicines and various complex deoxicity formulations.
Assuntos
Medicamentos de Ervas Chinesas/toxicidade , Tripterygium/química , Tripterygium/toxicidade , Aminoácidos/metabolismo , Animais , Composição de Medicamentos , Medicamentos de Ervas Chinesas/química , Metabolismo Energético/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metabolômica , Ratos , Ratos Sprague-DawleyRESUMO
OBJECTIVE: To investigate the effect of respiratory syncytial virus (RSV)-related pulmonary infection on endogenous metabolites in large intestinal mucosa in BALB/c mice using metabolomics technology based on gas chromatography-mass spectrometry (GC-MS). METHODS: Mice were randomly divided into a control group and a RSV pneumonia model group (n=16 each). The mouse model of RSV pneumonia was established using intranasal RSV infection (100×TCID50, 50â µL/mouse, once a day). After 7 days of intranasal RSV infection, the mice were sacrificed and GC-MS was used to identify endogenous metabolites and measure the changes in their relative content in colon tissue. SMCA-P12.0 software was used to perform principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) for endogenous metabolites in colon tissue. The differentially expressed metabolites in colon tissue were imported into the metabolic pathway platform Metaboanalyst to analyze related metabolic pathways. RESULTS: PCA and OPLS-DA showed significant differences between the control and RSV pneumonia model groups. A total of 32 metabolites were identified in the colon tissue of the mice with RSV pneumonia. The RSV pneumonia model group had significant increases in the content of leucine, isoleucine, glycine, alanine, arachidonic acid, and lactic acid, which were related to the valine, leucine, isoleucine, arachidonic acid, and pyruvic acid metabolic pathways. CONCLUSIONS: RSV pneumonia might cause metabolic disorders in the large intestinal tissue in mice.
Assuntos
Mucosa Intestinal/metabolismo , Intestino Grosso/metabolismo , Pneumonia Viral/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Intestino Grosso/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB CRESUMO
There is mounting evidence that tumor angiogenesis can be regulated by platelets (Plts), which serve as major sources and delivery vehicles of many proangiogenic cytokines including transforming growth factor-ß and vascular endothelial growth factor. Although considerable progress has been made in understanding the role for Plt secretion in tumor angiogenesis, very little is known about the precise mechanisms underlying cancer cell induction of Plt granule release. Here, we demonstrated that nonsmall cell lung cancer (NSCLC) cells directly induced Plt secretion of several angiogenic regulatory cytokines that promoted angiogenesis in concert. Moreover, we discovered that these Plt-derived angiogenesis modulators were regulated by different molecular pathways and could be largely inhibited by combination of multiple signaling inhibitors. Our present studies indicated that manipulation of Plt secretion of angiogenic cytokines without compromising hemostatic functions could provide a novel option for management of tumor angiogenesis and metastasis in NSCLC patients with thrombocytosis.
Assuntos
Plaquetas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neovascularização Patológica , Trombocitose/genética , Coagulação Sanguínea/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Citocinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ativação Plaquetária/genética , Transdução de Sinais/genética , Trombocitose/metabolismo , Trombocitose/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Sorafenib (SOR) is a molecular targeting agent commonly utilized as a primary treatment for advanced and inoperable hepatocellular carcinoma (HCC). Regrettably, the effectiveness of SOR is frequently hindered by the resistance of multiple HCC cases. The current investigation endeavors to examine the potential of the natural product quercetin (QUE) in reversing the acquired resistance of SOR-resistant cells, known as Huh7R, to SOR. Moreover, this study aims to elucidate the underlying molecular mechanism that contributes to this phenomenon. The results demonstrated that QUE significantly impeded proliferation and stimulated apoptosis in Huh7R cells, while also suppressing the growth of transplanted tumors. The impact of QUE enhanced the efficacy of SOR treatment for Huh7R. Additionally, bioinformatic and western blot analyses indicated that the underlying mechanisms may be associated with EGFR tyrosine kinase inhibitor resistance, the PI3K-AKT signaling pathway, and HCC. Furthermore, molecular docking and dynamics simulation assays revealed that QUE exhibited strong affinity and stability towards its hub targets, EGFR and AKT1. It is noteworthy that the activation of EGFR by its ligand, EGF, mitigated the effects of co-treatment with QUE and SOR. These findings suggest that QUE might potentially serve as a therapeutic agent in treating as well as facilitating SOR against Huh7R cells, which has substantial clinical and research implications for the treatment of acquired resistance to SOR in HCC.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Carcinoma Hepatocelular/patologia , Antioxidantes/farmacologia , Quercetina/farmacologia , Quercetina/uso terapêutico , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de CélulasRESUMO
Introduction: Respiratory syncytial virus (RSV) fusion (F) protein is essential for facilitating virus entry into host cells, providing a hopeful path for combating viral diseases. However, F protein inhibitors can rapidly select for viral resistance. Thus, discovering new inhibitors of F-protein is necessary to enrich the RSV drug development pipeline. Methods: In this study, we screen 25 bioactive compounds from Chinese herbal medicines that exhibit a strong binding to the RSV-F protein using surface plasmon resonance. Results: After screening, we found emodin could strongly bind to RSV-F protein, and could effectively curb RSV infection. Further investigations certificated that emodin specifically disrupts the attachment and internalization phases of RSV infection by targeting the RSV-F protein. In vivo studies with mice infected with RSV demonstrated that emodin effectively reduces lung pathology. This therapeutic effect is attributed to emodin's capacity to diminish pro-inflammatory cytokine production and reduce viral load in the lungs. Discussion: In conclusion, our findings provide initial insights into the mechanism by which emodin counters RSV infection via engagement with the RSV-F protein, establishing it as a viable contender for the development of novel therapeutic agents aimed at RSV.
RESUMO
This study aimed to investigate how maternal asthma during pregnancy disrupts fetal lung development by altering lipid metabolism in the amniotic fluid, which is crucial for fetal development. A pregnancy-induced asthma model was established in female rats using house dust mite (HDM) as a common allergen. The fetuses were divided into four groups based on whether the mother and fetus were exposed to the allergen: PBS+PBS, PBS+HDM, HDM+PBS, and HDM+HDM. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to analyze changes in the lipid profile of the amniotic fluid and bronchoalveolar lavage fluid (BALF). Principal component analysis (PCA) and ChemRICH methods were used to explore the potential relationship between lipid metabolism abnormalities and impaired fetal lung development. The results indicate that maternal asthma exacerbates asthma-related inflammatory markers in fetuses, leading to pathological changes in the lungs and elevated levels of cytokines IL-5, IL-13, and IgE. Additionally, 18 differential lipids, primarily oxygenated lipids, were identified in the amniotic fluid after modeling, suggesting an enhanced oxidative stress environment for the fetus. This environment causes metabolic disturbances in various lipid groups in fetal lungs, with the HDM+HDM group showing significant abnormalities in lipids critical for lung development, including phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and fatty acids (FA). In conclusion, gestational asthma can reshape the lipid profile in the amniotic fluid and BALF, significantly disrupting fetal growth and lung development. Restoring normal lipid metabolism in the amniotic fluid and fetal lungs may offer a potential therapeutic approach to managing aberrant fetal lung development in asthmatic mothers.
RESUMO
AIM: To investigate whether luteolin, a highly prevalent flavonoid, reverses the effects of epithelial-mesenchymal transition (EMT) in vitro and in vivo and to determine the mechanisms underlying this reversal. METHODS: Murine malignant melanoma B16F10 cells were exposed to 1% O(2) for 24 h. Cellular mobility and adhesion were assessed using Boyden chamber transwell assay and cell adhesion assay, respectively. EMT-related proteins, such as E-cadherin and N-cadherin, were examined using Western blotting. Female C57BL/6 mice (6 to 8 weeks old) were injected with B16F10 cells (1×10(6) cells in 0.2 mL per mouse) via the lateral tail vein. The mice were treated with luteolin (10 or 20 mg/kg, ip) daily for 23 d. On the 23rd day after tumor injection, the mice were sacrificed, and the lungs were collected, and metastatic foci in the lung surfaces were photographed. Tissue sections were analyzed with immunohistochemistry and HE staining. RESULTS: Hypoxia changed the morphology of B16F10 cells in vitro from the cobblestone-like to mesenchymal-like strips, which was accompanied by increased cellular adhesion and invasion. Luteolin (5-50 µmol/L) suppressed the hypoxia-induced changes in the cells in a dose-dependent manner. Hypoxia significantly decreased the expression of E-cadherin while increased the expression of N-cadherin in the cells (indicating the occurrence of EMT-like transformation), which was reversed by luteolin (5 µmol/L). In B16F10 cells, luteolin up-regulated E-cadherin at least partly via inhibiting the ß3 integrin/FAK signal pathway. In experimental metastasis model mice, treatment with luteolin (10 or 20 mg/kg) reduced metastatic colonization in the lungs by 50%. Furthermore, the treatment increased the expression of E-cadherin while reduced the expression of vimentin and ß3 integrin in the tumor tissues. CONCLUSION: Luteolin inhibits the hypoxia-induced EMT in malignant melanoma cells both in vitro and in vivo via the regulation of ß3 integrin, suggesting that luteolin may be applied as a potential anticancer chemopreventative and chemotherapeutic agent.
Assuntos
Antineoplásicos/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Integrina beta3/metabolismo , Neoplasias Pulmonares/prevenção & controle , Luteolina/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Western Blotting , Caderinas/biossíntese , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Luteolina/administração & dosagem , Luteolina/farmacologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Invasividade NeoplásicaRESUMO
Sorafenib (SOR) is currently the first line molecular targeting agent for advanced liver cancer therapy. Unfortunately, the insensitivity of liver cancer patients to SOR relatively limits its effectiveness. Huaier (HUA), a natural medicinal parasitic fungus found on the Sophora japonica Linn., has been widely employed as an adjuvant medication for numerous malignancies due to its potent anti-tumoral properties. This study aims to elucidate the enhancing therapeutic efficacy of HUA on SOR treatment in hepatocellular carcinoma (HCC) cells and mouse models. The CCK-8, clone formation, flow cytometry, immunofluorescence, transmission electron microscopy, western blot, bioinformatic analysis, and xenograft tumor assays were performed to evaluate the synergistic anti-hepatoma efficacy and mechanisms of HUA-SOR combination treatment on HCC cells. The results revealed combination treatment further inhibited proliferation, promoted apoptosis, enhanced autophagy of HCC cells, and suppressed the growth of transplanted tumors in mice, compared with either HUA or SOR treatment alone. For Hep3B and Huh7 cells, the optimal synergistic doses of HUA in combination with SOR were 8 mg/mL + 4 µM and 4 mg/mL + 2 µM, with combination index values of 0.646 and 0.588, respectively. Additionally, the underlying mechanisms might be related to biological processes that are mediated by mammalian target of rapamycin (mTOR). The combination treatment downregulated the protein expression levels of p-mTOR, p-p70S6K, p62, and upregulated the protein expression levels of Beclin-1 and LC3B-II. The mTOR activator MHY1485 attenuated the effect of HUA-SOR combination by inhibiting autophagy, suggesting HUA may potentiate the sensitivity of HCC cells to SOR by partially inducing mTOR-mediated autophagic cell death. These findings might provide a rationale experimental foundation for clinical applications of HUA with SOR.
Assuntos
Morte Celular Autofágica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Proteína Beclina-1 , Carcinoma Hepatocelular/tratamento farmacológico , Misturas Complexas , Fungos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Mamíferos , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa , Sincalida , Sirolimo , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR , TrametesRESUMO
Cyclophosphamide (CP) has been proven to be an embryo-fetal toxic. However, the mechanism responsible for the toxicity of the teratogenic agent has not been fully explored. This study aimed to examine the teratogenicity of CP when administered in the sensitive period of pregnant rats. The effect of CP on the lipid and metabolic profiles of amniotic fluid was evaluated using a UHPLC-Q-Exactive Orbitrap MS-based method. Metabolome analysis was performed using the MS-DIAL software with LipidBlast and NIST. Initially, we identified 636 and 154 lipid compounds in the positive and negative ion modes and 118 metabolites for differential analysis. Mainly 4 types of oxidized lipids in the amniotic fluid were found to accumulate most significantly after CP treatment, including very-long-chain unsaturated fatty acids (VLCUFAs), polyunsaturated fatty acid (PUFA)-containing triglycerides (TGs), oxidized phosphatidylcholine (PC), and sphingomyelin (SM). Tryptophan and some long-chain saturated fatty acids were lowered pronouncedly after CP treatment. These findings suggest that CP may exert teratogenic toxicity on pregnant rats through maternal and fetal oxidative stress. The UHPLC-Q-Exactive Orbitrap MS-based lipidomics approach is worthy of wider application for evaluating the potential toxicity of other agents (toxicants) during embryonic development.