Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835016

RESUMO

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Assuntos
Adenosina Desaminase , Quinases Ciclina-Dependentes , Proteínas de Ligação a DNA , Edição de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Linhagem Celular Tumoral , Proteína Quinase CDC2
2.
Invest Ophthalmol Vis Sci ; 65(8): 11, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967943

RESUMO

Purpose: Ocular melanoma is a common primary malignant ocular tumor in adults with limited effective treatments. Epigenetic regulation plays an important role in tumor development. The switching/sucrose nonfermentation (SWI/SNF) chromatin remodeling complex and bromodomain and extraterminal domain family proteins are epigenetic regulators involved in several cancers. We aimed to screen a candidate small molecule inhibitor targeting these regulators and investigate its effect and mechanism in ocular melanoma. Methods: We observed phenotypes caused by knockdown of the corresponding gene and synergistic effects with BRD inhibitor treatment and SWI/SNF complex knockdown. The effect of JQ-1 on ocular melanoma cell cycle and apoptosis was analyzed with flow cytometry. Via RNA sequencing, we also explored the mechanism of BRD4. Results: The best tumor inhibitory effect was observed for the BRD4 inhibitor (JQ-1), although there were no statistically obvious changes in the shBRD4 and shBRD9 groups. Interestingly, the inhibitory effect of JQ-1 was decrease in the shBRD4 group. JQ-1 inhibits the growth of melanoma in various cell lines and in tumor-bearing mice. We found 17 of these 28 common differentially expressed genes were downregulated after MEL270 and MEL290 cells treated with JQ-1. Four of these 17 genes, TP53I11, SH2D5, SEMA5A, and MDGA1, were positively correlated with BRD4. In TCGA database, low expression of TP53I11, SH2D5, SEMA5A, and MDGA1 improved the overall survival rate of patients. Furthermore, the disease-free survival rate was increased in the groups with low expression of TP53I11, SH2D5, and SEMA5A. Conclusions: JQ-1 may act downstream of BRD4 and suppress ocular melanoma growth by inducing G1 cell cycle arrest.


Assuntos
Apoptose , Azepinas , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular , Melanoma , Fatores de Transcrição , Triazóis , Animais , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Camundongos , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Azepinas/farmacologia , Triazóis/farmacologia , Triazóis/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/metabolismo , Citometria de Fluxo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Proteínas que Contêm Bromodomínio
3.
Asia Pac J Ophthalmol (Phila) ; 13(2): 100058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615905

RESUMO

Retinoblastoma, the primary ocular malignancy in pediatric patients, poses a substantial threat to mortality without prompt and effective management. The prognosis for survival and preservation of visual acuity hinges upon the disease severity at the time of initial diagnosis. Notably, retinoblastoma has played a crucial role in unraveling the genetic foundations of oncogenesis. The process of tumorigenesis commonly begins with the occurrence of biallelic mutation in the RB1 tumor suppressor gene, which is then followed by a cascade of genetic and epigenetic alterations that correspond to the clinical stage and pathological features of the tumor. The RB1 gene, recognized as a tumor suppressor, encodes the retinoblastoma protein, which plays a vital role in governing cellular replication through interactions with E2F transcription factors and chromatin remodeling proteins. The diagnosis and treatment of retinoblastoma necessitate consideration of numerous factors, including disease staging, germline mutation status, family psychosocial factors, and the resources available within the institution. This review has systematically compiled and categorized the latest developments in the diagnosis and treatment of retinoblastoma which enhanced the quality of care for this pediatric malignancy.


Assuntos
Neoplasias da Retina , Retinoblastoma , Retinoblastoma/terapia , Retinoblastoma/diagnóstico , Retinoblastoma/genética , Humanos , Neoplasias da Retina/terapia , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/genética , Gerenciamento Clínico
4.
Biomater Sci ; 12(15): 3826-3840, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38758027

RESUMO

Due to the immunosuppressive tumor microenvironment (TME) and potential systemic toxicity, chemotherapy often fails to elicit satisfactory anti-tumor responses, so how to activate anti-tumor immunity to improve the therapeutic efficacy remains a challenging problem. Photothermal therapy (PTT) serves as a promising approach to activate anti-tumor immunity by inducing the release of tumor neoantigens in situ. In this study, we designed tetrasulfide bonded mesoporous silicon nanoparticles (MSNs) loaded with the traditional drug doxorubicin (DOX) inside and modified their outer layer with polydopamine (DOX/MSN-4S@PDA) for comprehensive anti-tumor studies in vivo and in vitro. The MSN core contains GSH-sensitive tetrasulfide bonds that enhance DOX release while generating hydrogen sulfide (H2S) to improve the therapeutic efficacy of DOX. The polydopamine (PDA) coating confers acid sensitivity and mild photothermal properties upon exposure to near-infrared (NIR) light, while the addition of hyaluronic acid (HA) to the outermost layer enables targeted delivery to CD44-expressing tumor cells, thereby enhancing drug accumulation at the tumor site and reducing toxic side effects. Our studies demonstrate that DOX/MSN@PDA-HA can reverse the immunosuppressive tumor microenvironment in vivo, inducing potent immunogenic cell death (ICD) of tumor cells and improving anti-tumor efficacy. In addition, DOX/MSN@PDA-HA significantly suppresses tumor metastasis to the lung and liver. In summary, DOX/MSN@PDA-HA exhibits controlled drug release, excellent biocompatibility, and remarkable tumor inhibition capabilities through synergistic chemical/photothermal combined therapy.


Assuntos
Doxorrubicina , Indóis , Nanopartículas , Terapia Fototérmica , Polímeros , Silício , Silício/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Animais , Camundongos , Indóis/química , Indóis/farmacologia , Indóis/administração & dosagem , Porosidade , Nanopartículas/química , Nanopartículas/administração & dosagem , Polímeros/química , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Humanos , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Feminino , Terapia Combinada , Camundongos Endogâmicos BALB C
5.
Neoplasia ; 49: 100973, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38277817

RESUMO

F-box only protein 38 (FBXO38) is a member of the F-box family that mediates the ubiquitination and proteasome degradation of programmed death 1 (PD-1), and thus has important effects on T cell-related immunity. While its powerful role in adaptive immunity has attracted much attention, its regulatory roles in innate immune pathways remain unknown. The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an important innate immune pathway that regulates type I interferons. STING protein is the core component of this pathway. In this study, we identified that FBXO38 deficiency enhanced tumor proliferation and reduced tumor CD8+ T cells infiltration. Loss of FBXO38 resulted in reduced STING protein levels in vitro and in vivo, further leading to preventing cGAS-STING pathway activation, and decreased downstream product IFNA1 and CCL5. The mechanism of reduced STING protein was associated with lysosome-mediated degradation rather than proteasomal function. Our results demonstrate a critical role for FBXO38 in the cGAS-STING pathway.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Linfócitos T CD8-Positivos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Lisossomos/metabolismo , Imunidade Inata
6.
Adv Mater ; 36(30): e2403570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710097

RESUMO

A formidable challenge to achieve the practical applications of rechargeable lithium (Li) metal batteries (RLMBs) is to suppress the uncontrollable growth of Li dendrites. One of the most effective solutions is to fabricate Li metal anodes with specific crystal plane, but still lack of a simple and high-efficient approach. Herein, a facile and controllable way for the scalable customization of polished Li metal anodes with highly preferred (110) and (200) crystallographic orientation (donating as polished Li(110) and polished Li(200), respectively) by regulating the times of accumulative roll bonding, is reported. According to the inherent characteristics of polished Li(110)/Li(200), the influence of Li atomic structure on the electrochemical performance of RLMBs is deeply elucidated by combining theoretical calculations with relative experimental proofs. In particular, a polished Li(110) crystal plane is demonstrated to induce Li+ uniform deposition, promoting the formation of flat and dense Li deposits. Impressively, the polished Li(110)||LiFePO4 full cells exhibit unprecedented cycling stability with 10 000 cycles at 10 C almost without capacity degradation, indicating the great potential application prospect of such textured Li metal. More valuably, this work provides an important reference for low-cost, continued, and large-scale production of Li metal anodes with highly preferred crystal orientation through roll-to-roll manufacturability.

7.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826355

RESUMO

An "induced PARP inhibitor (PARPi) sensitivity by epigenetic modulation" strategy is being evaluated in the clinic to sensitize homologous recombination (HR)-proficient tumors to PARPi treatments. To expand its clinical applications and identify more efficient combinations, we performed a drug screen by combining PARPi with 74 well-characterized epigenetic modulators that target five major classes of epigenetic enzymes. Both type I PRMT inhibitor and PRMT5 inhibitor exhibit high combination and clinical priority scores in our screen. PRMT inhibition significantly enhances PARPi treatment-induced DNA damage in HR-proficient ovarian and breast cancer cells. Mechanistically, PRMTs maintain the expression of genes associated with DNA damage repair and BRCAness and regulate intrinsic innate immune pathways in cancer cells. Analyzing large-scale genomic and functional profiles from TCGA and DepMap further confirms that PRMT1, PRMT4, and PRMT5 are potential therapeutic targets in oncology. Finally, PRMT1 and PRMT5 inhibition act synergistically to enhance PARPi sensitivity. Our studies provide a strong rationale for the clinical application of a combination of PRMT and PARP inhibitors in patients with HR-proficient ovarian or breast cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa