Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(10): 3005-3013, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416810

RESUMO

Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Diagnóstico por Imagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos
2.
Adv Mater ; 36(28): e2402434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684233

RESUMO

To enhance the phototheranostic performance, agents with high reactive oxygen species (ROS) generation, good tumor-targeting ability, and prolonged retention are urgently needed. However, symmetric donor-acceptor (D-A) type agents usually produce spherical nanoaggregates, leading to good tumor targeting but inferior retention. Rod-like nanoaggregates are desired to extend their retention in tumors; however, this remains a challenge. In particular, agents with dynamically changeable shapes that integrate merits of different morphologies are seldomly reported. Therefore, self-assembled organic nanoaggregates with smart shape tunability are designed here using an asymmetric D-A type TIBT. The photoluminescence quantum yield in solids is up to 52.24% for TIBT. TIBT also exhibits high ROS generation in corresponding nanoaggregates (TIBT-NCs). Moreover, dynamic self-assembly in shape changing from nanospheres to nanorods occurrs in TIBT-NCs, contributing to the enhancement of ROS quantum yield from 0.55 to 0.72. In addition, dynamic self-assembly can be observed for both in vitro and in vivo, conferring TIBT-NCs with strong tumor targeting and prolonged retention. Finally, efficient photodynamic therapy to inhibit tumor growth is achieved in TIBT-NCs, with an inhibition rate of 90%. This work demonstrates that asymmetric D-A type agents can play significant roles in forming self-assembled organic nanoaggregates, thus showing great potential in long-acting cancer therapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa